精英家教网 > 高中数学 > 题目详情
已知bn=(1+1)(1+
1
2
)(1+
1
22
)…(1+
1
2n
),cn=6(1-
1
2n
).用数学归纳法证明:对任意n∈N*,bn≤cn
证明:(1)当n=1时,b1=(1+1)(1+
1
2
)=3,c1=6(1-
1
2
)=3,所以b1≤c1成立.
(2)设当n=k时,有bk≤ck成立,即(1+1)(1+
1
2
)(1+
1
22
)…(1+
1
2k
)≤
6(1-
1
2k
)

当n=k+1时,(1+1)(1+
1
2
)(1+
1
22
)…(1+
1
2k
)(1+
1
2k+1
)≤
6(1-
1
2k
)
(1+
1
2k+1
)

=6(1+
1
2k+1
-
1
2k
-
1
22k+1
)
=6(1-
1
2k+1
-
1
22k+1
)
<6(1-
1
2k+1
)

即当n=k+1时,不等式也成立,
综合(1)(2)可知原不等式成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列an和bn满足:a1=λ,an+1=
23
an+n-4
,bn=(-1)n(an-3n+21),其中λ为实数,n为正整数.
(1)试判断数列an是否可能为等比数列,并证明你的结论;
(2)求数列bn的通项公式;
(3)设a>0,Sn为数列bn的前n项和,如果对于任意正整数n,总存在实数λ,使得不等式a<Sn<a+1成立,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知bn=(1+1)(1+
1
2
)(1+
1
22
)…(1+
1
2n
),cn=6(1-
1
2n
).用数学归纳法证明:对任意n∈N*,bn≤cn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x
3x+1
,且满足:a1=1,an+1=f(an)

(1)求证:
{
1
an
}是等差数列

(2){bn}的前n项和Sn=2n-1,若Tn=
b1
a1
+
b2
a2
+…
bn
an
,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知bn=(1+1)(1+数学公式)(1+数学公式)…(1+数学公式),cn=6(1-数学公式).用数学归纳法证明:对任意n∈N*,bn≤cn

查看答案和解析>>

同步练习册答案