精英家教网 > 高中数学 > 题目详情
15.函数y=cos(x+$\frac{π}{6}$),x∈[0,$\frac{π}{2}$].的值域是(  )
A.(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$]B.[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]C.[$\frac{\sqrt{3}}{2}$,1]D.[$\frac{1}{2}$,1]

分析 由条件利用余弦函数的定义域和值域,求得函数y的值域.

解答 解:由x∈[0,$\frac{π}{2}$],可得x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],∴函数y=cos(x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$],
故选:B.

点评 本题主要考查余弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在△ABC中,∠A=45°,a=$\sqrt{5}$,b=4,满足条件的△ABC(  )
A.不存在B.有一个C.有两个D.有无数多个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.圆(x-$\frac{3}{2}$)2+(y-1)2=$\frac{1}{4}$的圆心是$(\frac{3}{2},1)$,半径是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.轴截面为正方形的圆柱叫做等边圆柱,已知某等边圆柱的轴截面面积为16cm2,求其底面周长和高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在正方体ABCD-A1B1C1D1中,E为A1A的中点,如图所示,试作出过B1,D1,E三点的平面与平面ABCD的交线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.写出与下列各角终边相同的角的集合,并判断它们分别为第几象限的角.
(1)65°;
(2)120°;
(3)-125°;
(4)300°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知F1,F2分别是双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点,A是曲线在第一象限内的点,若|AF2|=2,且∠F1AF2=45°,延长AF2交双曲线右支于点B,则|BF2|=2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数y=2${\;}^{-{x}^{2}}$+3,(x<0)的反函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别是F1,F2,离心率为$\frac{{\sqrt{3}}}{2}$,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2.设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围.

查看答案和解析>>

同步练习册答案