精英家教网 > 高中数学 > 题目详情
16.已知点O为△ABC内一点,满足$\overrightarrow{OA}+\overrightarrow{OB}+3\overrightarrow{OC}=\overrightarrow 0$,若$∠AOC=\frac{5π}{6},∠BOC=\frac{3π}{4},OA=4$,则OB=2$\sqrt{2}$.

分析 以O为原点,建立平面直角坐标系,设OB=x,OC=y,求出$\overrightarrow{OA}$,$\overrightarrow{OB},\overrightarrow{OC}$的坐标,代入$\overrightarrow{OA}+\overrightarrow{OB}+3\overrightarrow{OC}=\overrightarrow 0$列出方程组解出.

解答 解:以OA为x轴,O为原点建立平面直角坐标系,如图,则∠AOB=$\frac{5π}{12}$,设OB=x,OC=y,则B($\frac{\sqrt{6}-\sqrt{2}}{4}$x,-$\frac{\sqrt{6}+\sqrt{2}}{4}x$),
C(-$\frac{\sqrt{3}}{2}y$,$\frac{1}{2}y$),A(4,0).∴$\overrightarrow{OA}$=(4,0),$\overrightarrow{OB}$=($\frac{\sqrt{6}-\sqrt{2}}{4}$x,-$\frac{\sqrt{6}+\sqrt{2}}{4}x$),$\overrightarrow{OC}$=(-$\frac{\sqrt{3}}{2}y$,$\frac{1}{2}y$).
∵$\overrightarrow{OA}+\overrightarrow{OB}+3\overrightarrow{OC}=\overrightarrow 0$,∴$\left\{\begin{array}{l}{4+\frac{\sqrt{6}-\sqrt{2}}{4}x-\frac{3\sqrt{3}}{2}y=0}\\{-\frac{\sqrt{6}+\sqrt{2}}{4}x+\frac{3}{2}y=0}\end{array}\right.$,解得x=2$\sqrt{2}$.
故答案为:2$\sqrt{2}$.

点评 本题考查了平面向量在几何中的应用,建立坐标系求出向量坐标是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1,其渐近线方程为y=±$\frac{2}{3}$x,若点P是其右支上(不同于右顶点)一点,F1,F2分别为双曲线的左、右焦点,则△PF1F2的内切圆的圆心的横坐标为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知F1,F2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F1的直线与椭圆相交于A,B两点,若∠BAF2=60°,|AB|=|AF2|,则椭圆的离心率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=2,∠AOB=150°,点C在∠AOB的内部且∠AOC=30°,设$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,则$\frac{m}{n}$=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.点A是⊙O上的动点,点B是⊙O内的定点(不与点O重合)PQ垂直平分AB于Q,交OA于点P,则点P的轨迹是(  )
A.直线B.C.椭圆D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知ω,t>0,函数$f(x)=|{\begin{array}{l}{\sqrt{3}}&{sinωx}\\ 1&{cosωx}\end{array}}|$的最小正周期为2π,将f(x)的图象向左平移t个单位,所得图象对应的函数为偶函数,则t的最小值为$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在等差数列{an}中,a1+a3+a5=9,a2+a4+a6=15,则数列{an}的前10项的和等于80.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.学校有两个食堂,现有3名学生前往就餐,则三个人在同一个食堂就餐的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.等比数列{an}的各项均为正数,a1>1,a6+a7>a6a7+1>2,记{an}前n项积为Tn,则满足Tn>1的最大正整数n的值为12.

查看答案和解析>>

同步练习册答案