精英家教网 > 高中数学 > 题目详情
如果直线l⊥平面α,①若直线m⊥l,则mα;②若m⊥α,则ml;③若mα,则m⊥l;④若ml,则m⊥α,上述判断正确的是______.
①由直线l⊥平面α,直线m⊥l,可得mα或m?α,因此①不正确;
②∵直线l⊥平面α,m⊥α,∴ml.正确;
③由直线l⊥平面α,mα,可得m⊥l,正确;
④由直线l⊥平面α,ml,可得m⊥α,正确.
综上可知:只有②③④正确.
故答案为:②③④.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中-A BC中,AB  AC,AB=AC=2,=4,点D是BC的中点.
(1)求异面直线所成角的余弦值;
(2)求平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

异面直线a,b满足a?α,b?β,α∩β=l,则l与a,b的位置关系一定是(  )
A.l与a,b都相交
B.l至少与a,b中的一条相交
C.l至多与a,b中的一条相交
D.l至少与a,b中的一条平行

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有下列四种说法:
①垂直于同一条直线的两条直线平行;
②垂直于同一条直线的两个平面平行;
③垂直于同一个平面的两条直线平行;
④垂直于同一个平面的两个平面平行.
其中正确的说法有______.(只需填写序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给定下列四个命题:
(1)空间四边形的两条对角线是异面直线;
(2)空间四边形ABCD中没有对角线;
(3)和两条异面直线都相交的两条直线必异面;
(4)过直线外一点作该直线的垂线,有且只有一条;
(5)两条直线互相垂直,则一定共面;
(6)垂直于同一直线的两条直线相互平行.
其中正确的是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2.
(I)证明:BC⊥平面AMN;
(II)求三棱锥N-AMC的体积;
(III)在线段PD上是否存在一点E,使得NM平面ACE;若存在,求出PE的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用一个平面截去正方体一角,则截面是(  )
A.直角三角形B.锐角三角形C.钝角三角形D.正三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,PA=PB,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC.
(Ⅰ)求证:PA⊥平面PBC;
(Ⅱ)求二面角P-AC-B的大小;
(Ⅲ)求异面直线AB和PC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

把正方形沿对角线折起,当以四点为顶点的三棱锥体积最大时,直线和平面所成的角的大小为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案