精英家教网 > 高中数学 > 题目详情
7.已知tanα=1,化简:
(1)$\frac{cosα+2sinα}{2cosα-3sinα}$;
(2)sin2α+sin2α.

分析 化简所求的表达式为正切函数的形式,代入求解即可.

解答 解:tanα=1,
(1)$\frac{cosα+2sinα}{2cosα-3sinα}$=$\frac{1+2tanα}{2-3tanα}$=$\frac{1+2}{2-3}$=-3;
(2)sin2α+sin2α=$\frac{2sinαcosα+{sin}^{2}α}{{sin}^{2}α+{cos}^{2}α}$=$\frac{2tanα+{tan}^{2}α}{{tan}^{2}α+1}$=$\frac{2+1}{1+1}$=$\frac{3}{2}$.

点评 本题考查同角三角函数的基本关系式的应用,三角函数化简求值,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设点P为有公共焦点F1、F2的椭圆M和双曲线Г的一个交点,且cos∠F1PF2=$\frac{3}{5}$,椭圆M的离心率为e1,双曲线Г的离心率为e2.若e2=2e1,则e1=(  )
A.$\frac{\sqrt{7}}{5}$B.$\frac{\sqrt{7}}{4}$C.$\frac{\sqrt{10}}{5}$D.$\frac{\sqrt{10}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知点A(1,-2,2),B(2,-2,-1),C(6,5,2),O为坐标原点,则三棱锥O-ABC的体积为(  )
A.$\frac{65}{3}$B.$\frac{\sqrt{65}}{3}$C.$\frac{\sqrt{65}}{6}$D.$\frac{65}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆$\frac{x^2}{2}$+y2=1与直线y=x+m交于A、B两点,且|AB|=$\frac{4\sqrt{2}}{3}$,则实数m的值为(  )
A.±1B.±$\frac{1}{2}$C.$\sqrt{2}$D.±$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=|cosx|(x≥0)的图象与过原点的直线恰有四个交点,设四个交点中横坐标最大值为θ,则$\frac{(1+{θ}^{2})sin2θ}{θ}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.化简:(-3a${\;}^{\frac{1}{3}}$•b${\;}^{\frac{2}{3}}$)(a${\;}^{\frac{1}{2}}$•b${\;}^{\frac{1}{2}}$)÷(-2a${\;}^{\frac{5}{6}}$•b${\;}^{\frac{1}{6}}$)=$\frac{3}{2}b$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图的程序框图表示算法的运行结果是(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知p:0<m<1,q:椭圆$\frac{{x}^{2}}{m}$+y2=1的焦点在y轴上,则p是q的充要条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”填空)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知A,B两地相距100km.按交通法规规定:A,B两地之间的公路上车速要求不低于60km/h且不高于100km/h.假设汽车以xkm/h速度行驶时,每小时耗油量为($4+\frac{1}{128000}{x^3}-\frac{1}{80}x$)升,汽油的价格是6元/升,司机每小时的工资是24元.
(1)若汽车从A地以64km/h的速度匀速行驶到B地,需耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从A地到B地的总费用最低?

查看答案和解析>>

同步练习册答案