精英家教网 > 高中数学 > 题目详情
20.实数a>1,b>1是a+b>2的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 实数a>1,b>1⇒a+b>2;反之不成立,例如a=2,b=$\frac{1}{2}$.即可判断出结论.

解答 解:实数a>1,b>1⇒a+b>2;反之不成立,例如a=2,b=$\frac{1}{2}$.
∴a>1,b>1是a+b>2的充分不必要条件.
故选:A.

点评 本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.证明:若2-x-2y>lnx-1n(-y)(x>0,y<0),则x+y<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a>0,x,y满足约束条件$\left\{\begin{array}{l}x+y-a≤0\\ x-y≥0\\ y+a≥0\end{array}\right.$,若变量x的最大值为6,则变量y的取值范围为$[-3,\frac{3}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知tanα=2,求下列各式的值
(Ⅰ)$\frac{4sinα-2cosα}{5cosα+3sinα}$
(Ⅱ)$\frac{1}{4}{sin^2}α+\frac{1}{3}sinαcosα+\frac{1}{2}{cos^2}α+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A,B,C对应的边分别为a,b,c(a≤b≤c),且bcosC+ccosB=2asinA.
(Ⅰ)求角A;
(Ⅱ)求证:${a^2}≥(2-\sqrt{3})bc$;
(Ⅲ)若a=b,且BC边上的中线AM长为$\sqrt{7}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.绝对值|x-1|的几何意义是数轴上的点x与点1之间的距离,那么对于实数a,b,|x-a|+|x-b|的几何意义即为点x与点a、点b的距离之和.
(1)直接写出|x-1|+|x-2|与|x-1|+|x-2|+|x-3|的最小值,并写出取到最小值时x满足的条件;
(2)设a1≤a2≤…≤an是给定的n个实数,记S=|x-a1|+|x-a2|+…+|x-an|.试猜想:若n为奇数,则当x∈{${a}_{\frac{n+1}{2}}$}时S取到最小值;若n为偶数,则当x∈[${a}_{\frac{n}{2}}$,${a}_{\frac{n}{2}+1}$]时,S取到最小值;(直接写出结果即可)
(3)求|x-1|+|2x-1|+|3x-1|+…+|10x-1|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知四棱锥S-ABCD中,底面ABCD是直角梯形,∠ABC=90°,AD∥BC,SA=AB=BC=2,AD=1,SA⊥底面ABCD.
(1)求四棱锥S-ABCD的体积;
(2)(理)求SC与平面SAB所成角的大小
(文)求异面直线SC与AD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=log2x-(x-1)2+2的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若x1满足3x-1=2-x,x2满足log3(x-1)+x-2=0,则x1+x2等于(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.3

查看答案和解析>>

同步练习册答案