精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x﹣﹣(a+2)lnx,其中实数a≥0.

(1)若a=0,求函数f(x)在x∈[1,3]上的最值;

(2)若a>0,讨论函数f(x)的单调性.

【答案】(1)函数f(x)在区间[1,3]上的最大值是1,最小值为2﹣2ln2;(2)见解析

【解析】试题分析:

(1)对函数求导,利用导函数与原函数的关系得到最大值是1,最小值为2﹣2ln2;

(2)分类讨论可得a>2时,fx)的单调增区间为(0,2),(a,+∞),单调减区间为(2,a);

a=2时,fx)的单调增区间为(0,+∞);

0<a<2时,fx)的单调增区间为(0,a),(2,+∞),单调减区间为(a,2).

试题解析:

解:(1)∵f(x)=x﹣2lnx,∴f′(x)=,令f′(x)=0,∴x=2.列表如下,

x

1

(1,2)

2

(2,3)

3

f'(x)

0

+

f(x)

1

2﹣2ln2

3﹣2ln3

从上表可知,∵f(3)﹣f(1)=2﹣2ln3<0,∴f(1)>f(3),

函数f(x)在区间[1,3]上的最大值是1,最小值为2﹣2ln2;

f′(x)=1+ - ==

①当a>2时,x∈(0,2)∪(a,+∞)时,f′(x)>0;当x∈(2,a)时,f′(x)<0,

∴f(x)的单调增区间为(0,2),(a,+∞),单调减区间为(2,a);

②当a=2时,∵f′(x)= >0(x≠2),∴f(x)的单调增区间为(0,+∞);

③当0<a<2时,x∈(0,a)∪(2,+∞)时,f′(x)>0;当x∈(a,2)时,f′(x)<0,

∴f(x)的单调增区间为(0,a),(2,+∞),单调减区间为(a,2);

综上,当a>2时,f(x)的单调增区间为(0,2),(a,+∞),单调减区间为(2,a);

当a=2时,f(x)的单调增区间为(0,+∞);

当0<a<2时,f(x)的单调增区间为(0,a),(2,+∞),单调减区间为(a,2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求的最小正周期和单调递增区间;

(Ⅱ)说明函数的图像可由正弦曲线经过怎样的变化得到;

(Ⅲ)若是第二象限的角,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国内某汽车品牌一个月内被消费者投诉的次数用表示,据统计,随机变量的概率分布如下:

(1)求的值;

(2)假设一月与二月被消费者投诉的次数互不影响,求该汽车品牌在这两个月内被消费者投诉次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的解集为

(Ⅰ)求的值;

(Ⅱ)若成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,下列结论正确的是( )

A. 月接待游客逐月增加

B. 年接待游客量逐年减少

C. 各年的月接待游客量高峰期大致在7,8月

D. 各年1月至6月的月接待游客相对于7月至12月,波动性更大,变化比较明显

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】葫芦岛市某高中进行一项调查:2012年至2016年本校学生人均年求学花销(单位:万元)的数据如下表:

年份

2012

2013

2014

2015

2016

年份代号

1

2

3

4

5

年求学花销

3.2

3.5

3.8

4.6

4.9

(1)求关于的线性回归方程;

(2)利用(1)中的回归方程,分析2012年至2016年本校学生人均年求学花销的变化情况,并预测该地区2017年本校学生人均年求学花销情况.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB为圆O的直径,点E,F在圆O上,且AB//EF,AB=2EF,矩形ABCD所在的平面和圆O所在的平面互相垂直.

I证明:OF//平面BEC;

证明:平面ADF平面BCF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的直三棱柱中,分别是的中点.

)求证:平面

)若为正三角形上的一点求直线与直线所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年利润(单位:万元)的影响,对近5年的宣传费和年利润)进行了统计,列出了下表:

(单位:千元)

2

4

7

17

30

(单位:万元)

1

2

3

4

5

员工小王和小李分别提供了不同的方案.

(1)小王准备用线性回归模型拟合的关系,请你帮助建立关于的线性回归方程;(系数精确到0.01)

(2)小李决定选择对数回归模型拟合的关系,得到了回归方程: ,并提供了相关指数.请用相关指数说明哪个模型更合适,并预测年宣传费为4万元的年利润.(精确到0.01)(小王也提供了他的分析数据

参考公式:相关指数

回归方程中斜率和截距的最小二乘估计公式分别为: .参考数据:

查看答案和解析>>

同步练习册答案