【题目】如图,定圆C半径为2,A为圆C上的一个定点,B为圆C上的动点,若点A,B,C不共线,且| | |对任意t∈(0,+∞)恒成立,则 = .
科目:高中数学 来源: 题型:
【题目】已知空间四边形ABCD,E、H分别是AB、AD的中点,F、G分别是边BC、DC的三等分点(如图),
求证:
(1)对角线AC、BD是异面直线;
(2)直线EF和HG必交于一点,且交点在AC上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=2cos(x﹣ )的图象上所有的点的横坐标缩短到原来的 倍(纵坐标不变),得到函数y=g(x)的图象,则函数y=g(x)的图象( )
A.关于点(﹣ ,0)对称
B.关于点( ,0)对称
C.关于直线x=﹣ 对称
D.关于直线x= 对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆 ()的离心率为,其左焦点到点的距离为.
(1)求椭圆的标准方程;
(2)若直线 与椭圆相交于、两点(、不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市理论预测2000年到2004年人口总数与年份的关系如下表所示
年份200x(年) | 0 | 1 | 2 | 3 | 4 |
人口数y(十)万 | 5 | 7 | 8 | 11 | 19 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,求出Y关于x的线性回归方程Y=bx+a;
(3)据此估计2005年该城市人口总数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.
(1)求证:平面ABC⊥平面ACD;
(2)若E为AB中点,求点A到平面CED的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com