【题目】已知多面体中,四边形为平行四边形, ,且, , , .
(1)求证:平面平面;
(2)若,直线与平面夹角的正弦值为,求的值.
科目:高中数学 来源: 题型:
【题目】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线,的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
(1)将放在容器Ⅰ中,的一端置于点A处,另一端置于侧棱上,求没入水中部分的长度;
(2)将放在容器Ⅱ中,的一端置于点E处,另一端置于侧棱上,求没入水中部分的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣2|x|﹣3a
(1)当a=1时,在所给坐标系中,画出函数f(x)的图象,并求f(x)的单调递增区间
(2)若直线y=1与函数f(x)的图象有4个交点,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|2x2+ax+2=0,a∈R},B={x|x2+3x+2a=0,a∈R},A∩B={2}且A∪B=I,则(IA)∪(IB)=( )
A.{﹣5, }
B.{﹣5, ,2}
C.{﹣5,2}
D.{ ,2}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),若函数y= 与y=f(x)图象的交点为(x1 , y1),(x2 , y2),…,(xm , ym),则 (xi+yi)=( )
A.0
B.m
C.2m
D.4m
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0}.
(1)若x∈A是x∈B的充分条件,求a的取值范围;
(2)若A∩B=,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数与的定义域为,有下列5个命题:
①若,则的图象自身关于直线轴对称;
②与的图象关于直线对称;
③函数与的图象关于轴对称;
④为奇函数,且图象关于直线对称,则周期为2;
⑤为偶函数, 为奇函数,且,则周期为2.
其中正确命题的序号是____________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com