精英家教网 > 高中数学 > 题目详情
求值:(1)(
325
-
125
425

(2)2log525-3log264.
分析:(1)首先变根式为分数指数幂,然后拆开运算即可.
(2)直接利用对数式的运算性质化简求值.
解答:解:(1)(
325
-
125
425

=(5
2
3
-5
3
2
5
1
2

=5
2
3
-
1
2
-5
3
2
-
1
2

=5
1
6
-5

=
65
-5

(2)2log525-3log264
=2log552-3log226
=4-3×6
=-14.
点评:本题考查了对数式的运算性质,考查了有理指数幂的化简求值,解答的关键是熟记有关性质,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2sin2x+2sinxcosx-1.
(Ⅰ)求f(
π
2
)
和f(x)的最大值;
(Ⅱ)若f(
α
2
+
8
)=-
3
2
5
,α是第二象限的角,求cos(
π
3
+α)
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求值:(1)(
325
-
125
425

(2)2log525-3log264.

查看答案和解析>>

科目:高中数学 来源:2013年宁夏银川一中高考数学二模试卷(理科)(解析版) 题型:解答题

某学校为了研究学情,从高三年级中抽取了20名学生三次测试的数学成绩和物理成绩,计算出了他们三次成绩的平均名次如下表:
学生序号12345678910
数    学1.312.325.736.750.367.749.052.040.034.3
物    理2.39.731.022.340.058.039.060.763.342.7
学生序号11121314151617181920
数    学78.350.065.766.368.095.090.787.7103.786.7
物    理49.746.783.359.750.0101.376.786.099.799.0
学校规定平均名次小于或等于40.0者为优秀,大于40.0者为不优秀.
(1)对名次优秀者赋分2,对名次不优秀者赋分1,从这20名学生中随机抽取2名,用ξ表示这两名学生数学科得分的和,求ξ的分布列和数学期望;
(2)根据这次抽查数据,是否在犯错误的概率不超过0.025的前提下认为物理成绩优秀与否和数学成绩优秀与否有关系?(下面的临界值表和公式可供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年吉林省长春市高三第四次调研数学试卷(理科)(解析版) 题型:解答题

某学校为了研究学情,从高三年级中抽取了20名学生三次测试的数学成绩和物理成绩,计算出了他们三次成绩的平均名次如下表:
学生序号12345678910
数    学1.312.325.736.750.367.749.052.040.034.3
物    理2.39.731.022.340.058.039.060.763.342.7
学生序号11121314151617181920
数    学78.350.065.766.368.095.090.787.7103.786.7
物    理49.746.783.359.750.0101.376.786.099.799.0
学校规定平均名次小于或等于40.0者为优秀,大于40.0者为不优秀.
(1)对名次优秀者赋分2,对名次不优秀者赋分1,从这20名学生中随机抽取2名,用ξ表示这两名学生数学科得分的和,求ξ的分布列和数学期望;
(2)根据这次抽查数据,是否在犯错误的概率不超过0.025的前提下认为物理成绩优秀与否和数学成绩优秀与否有关系?(下面的临界值表和公式可供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案