精英家教网 > 高中数学 > 题目详情

设an(n=2,3,4…)是的展开式中x的一次项的系数,则的值是________.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分13分)已知数列{an}的前n项和为Sn,满足关系式(2+t)Sn+1-tSn=2t+4(t≠-2,t≠0,n=1,2,3,…)

(1)当a1为何值时,数列{an}是等比数列;

(2)在(1)的条件下,设数列{an}的公比为f(t),作数列{bn}使b1=1,bn=f(bn-1)(n=2,

3,4,…),求bn

(3)在(2)条件下,如果对一切n∈N,不等式bn+bn+1<恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)已知数列{an}的前n项和为Sn,满足关系式(2+t)Sn+1-tSn=2t+4(t≠-2,t≠0,n=1,2,3,…)

(1)当a1为何值时,数列{an}是等比数列;

(2)在(1)的条件下,设数列{an}的公比为f(t),作数列{bn}使b1=1,bn=f(bn-1)(n=2,

3,4,…),求bn

(3)在(2)条件下,如果对一切n∈N,不等式bn+bn+1<恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1∈(0,1),,n=2,3,4,….(Ⅰ)求{an}的通项公式;(Ⅱ)设,证明bn<bn+1,其中n为正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1∈(0,1),an=,n=2,3,4,….(Ⅰ)求{an}的通项公式;(Ⅱ)设bn=an,证明bn<bn+1,其中n为正整数.

查看答案和解析>>

同步练习册答案