精英家教网 > 高中数学 > 题目详情
已知集合M={a,a+d,a+2d},P={a,aq,aq2},其中a≠0,d≠0、q≠0,且M=P,求q的值.
【答案】分析:利用两个集合相等,集合中的元素相同,分类讨论列出方程组,求出q的值.
解答:解:∵M=P

解得q=1或q=-,当q=1时d=0舍去,
所以q=
点评:本题考查集合相等满足的条件是:集合中的元素相同.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M={a,a+d,a+2d},P={a,aq,aq2},其中a≠0,d≠0、q≠0,且M=P,求q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n.若对于任意的a∈A,总有-a∉A,则称集合A具有性质P.
(Ⅰ)检验集合{0,1,2,3}与{-1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;
(Ⅱ)对任何具有性质P的集合A,证明:n≤
k(k-1)2

(Ⅲ)判断m和n的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:北京高考真题 题型:解答题

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A},其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n,若对于任意的a∈A,总有-aA,则称集合A具有性质P。
(1)检验集合{0,1,2,3}与{-1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;
(2)对任何具有性质P的集合A,证明: n≤
(3)判断m和n的大小关系,并证明你的结论。

查看答案和解析>>

科目:高中数学 来源:月考题 题型:解答题

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素构成两个相应的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a﹣b∈A}.其中(a,b)是有序数对,集合S和T中的元素个数分别为m和n.若对于任意的a∈A,总有﹣aA,则称集合A具有性质P.
(I)检验集合{0,1,2,3}与{﹣1,2,3}是否具有性质P并对其中具有性质P的集合,写出相应的集合S和T;
(II)对任何具有性质P的集合A,证明: ;
(III)判断m和n的大小关系,并证明你的结论.

查看答案和解析>>

同步练习册答案