精英家教网 > 高中数学 > 题目详情
13.已知定点A(0,-1),点B在圆F:(x-1)2+y2=16上一运动,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}$=1.

分析 由题意得|PA|=|PB|,得到|PA|+|PF|=|PB|+|PF|=r=4>|AF|=2,根据椭圆的定义可求得动点P的轨迹E的方程

解答 解:由题意得|PA|=|PB|,
∴|PA|+|PF|=|PB|+|PF|=r=4>|AF|=2
∴P点轨迹是以A、F为焦点的椭圆.
设椭圆方程为$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}$=1(a>b>0),
则2a=4,a=2,a2-b2=c2=1,故b2=3,
∴点P的轨迹方程为$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}$=1.
故答案为:$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}$=1.

点评 本题考查椭圆的定义和几何性质,以及点圆位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知圆O:x2+y2=1与圆C:x2+y2-6x-8y+m=0相切于M点,求以M为圆心,且与圆C的半径相等的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求由参数方程x=${∫}_{0}^{t}$sinudu,y=${∫}_{0}^{t}$cosudu所确定的函数y=y(x)的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.平行四边形ABCD中,已知AB=3+$\sqrt{3}$,BD=3$\sqrt{2}$,∠BDC=45°.求:
(1)AD的长;
(2)角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$bx2+x,g(x)=$\frac{1}{3}$a2x3+$\frac{1}{2}$bx2+x,其中a>0,若函数g(x)存在两个极值点x1,x2,且点x1<x2
(1)求证:函数f(x)的导函数f′(x)在(-1,1)上是单调函数;
(2)当a>1时,函数f(x)也存在两个极值点x3,x4,且x3<x4,是判断x1,x2,x3,x4的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在四边形ABCD中,根据图示用一个向量填空:
$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{e}$,$\overrightarrow{b}$+$\overrightarrow{c}$=$\overrightarrow{f}$,$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$+$\overrightarrow{d}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知an=2n(n∈N+),则a1a2+a2a3+a3a4+…+anan+1=$\frac{4n(n+1)(n+2)}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.假如某天我校某班有3男2女五位同学均获某年北大、清华、复旦三大名校的保送资格,那么恰有2男1女三位同学保送北大的概率是(  )
A.$\frac{6}{125}$B.$\frac{2}{81}$C.$\frac{24}{125}$D.$\frac{8}{81}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一只袋内装有m个白球,n-m个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取了ξ个白球,下列概率等于$\frac{(n-m{)A}_{m}^{2}}{{A}_{n}^{3}}$的是(  )
A.P(ξ=3)B.P(ξ≥2)C.P(ξ≤3)D.P(ξ=2)

查看答案和解析>>

同步练习册答案