精英家教网 > 高中数学 > 题目详情

观察数列:

;②正整数依次被4除所得余数构成的数列

(1)对以上这些数列所共有的周期特征,请你类比周期函数的定义,为这类数列下一个周期数列的定义:对于数列,如果________________________,对于一切正整数都满足___________________________成立,则称数列是以为周期的周期数列;

(2)若数列满足的前项和,且,证明为周期数列,并求

(3)若数列的首项,且,判断数列是否为周期数列,不用证明.

解析:(1) 存在正整数

 (2)证明:由

             

              所以数列是以为周期的周期数列

       由

       于是 w.w.w.k.s.5.u.c.o.m      

       又

       所以,

      (3)当=0时,是周期数列,因为此时为常数列,所以对任意给定的正整数及任意正整数,都有,符合周期数列的定义.

        当时,是递增数列,不是周期数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•朝阳区二模)设A是满足下列两个条件的无穷数列{an}的集合:
an+an+22
an+1
;     ②an≤M.其中n∈N*,M是与n无关的常数.
(Ⅰ)若{an}是等差数列,Sn是其前n项的和,a3=4,S3=18,证明:{Sn}∈A;
(Ⅱ)对于(Ⅰ)中数列{an},正整数n1,n2,…,nt…(t∈N*)满足7<n1<n2<…<nt<…(t∈N*),并且使得a6a7an1an2,…,ant,…成等比数列. 若bm=10m-nm(m∈N*),则{bm}∈A是否成立?若成立,求M的取值范围,若不成立,请说明理由;
(Ⅲ)设数列{cn}的各项均为正整数,且{cn}∈A,证明:cn≤cn+1

查看答案和解析>>

科目:高中数学 来源: 题型:

 (08年扬州中学)  如果有穷数列为正整数)满足条件,…,,即),我们称其为“对称数列”.例如,由组合数组成的数列就是“对称数列”.

(1)设是项数为7的“对称数列”,其中是等差数列,且.依次写出的每一项;

(2)设是项数为(正整数)的“对称数列”,其中是首项为,公差为的等差数列.记各项的和为.当为何值时,取得最大值?并求出的最大值;

    (3)对于确定的正整数,写出所有项数不超过的“对称数列”,使得依次是该数列中连续的项;当时,求其中一个“对称数列”前项的和

查看答案和解析>>

科目:高中数学 来源: 题型:

20.(本小题共13分)

对于每项均是正整数的数列,定义变换将数列变换成数列

对于每项均是非负整数的数列,定义变换将数列各项从大到小排列,然后去掉所有为零的项,得到数列

又定义

是每项均为正整数的有穷数列,令

(Ⅰ)如果数列为5,3,2,写出数列

(Ⅱ)对于每项均是正整数的有穷数列,证明

(Ⅲ)证明对于任意给定的每项均为正整数的有穷数列,存在正整数,当时,

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考理科数学试卷 题型:选择题

数列对一切正整数n都有,其中是{an}的前n项和,则=(    )

A.                             B.                     C.4                     D.-4

 

查看答案和解析>>

同步练习册答案