ÒÑÖªº¯Êýf(x)=
x
a
+
a-1
x
£¨a¡Ù0ÇÒa¡Ù1£©£®
£¨¢ñ£©ÊÔ¾ÍʵÊýaµÄ²»Í¬È¡Öµ£¬Ð´³ö¸Ãº¯ÊýµÄµ¥µ÷µÝÔöÇø¼ä£»
£¨¢ò£©ÒÑÖªµ±x£¾0ʱ£¬º¯ÊýÔÚ(0£¬
6
)
Éϵ¥µ÷µÝ¼õ£¬ÔÚ(
6
£¬+¡Þ)
Éϵ¥µ÷µÝÔö£¬ÇóaµÄÖµ²¢Ð´³öº¯ÊýF(x)=
3
f(x)
µÄ½âÎöʽ£»
£¨¢ó£©¼Ç£¨¢ò£©Öеĺ¯ÊýF(x)=
3
f(x)
µÄͼÏóΪÇúÏßC£¬ÊÔÎÊÊÇ·ñ´æÔÚ¾­¹ýÔ­µãµÄÖ±Ïßl£¬Ê¹µÃlΪÇúÏßCµÄ¶Ô³ÆÖ᣿Èô´æÔÚ£¬Çó³ölµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¶Ôº¯Êýf£¨x£©½øÐÐÇóµ¼£¬Áîµ¼º¯Êý´óÓÚ0¸ù¾ÝaµÄ²»Í¬ÖµÇó³öxµÄ·¶Î§£®
£¨2£©Áîf'£¨
6
£©=0Çó³öa¼´¿ÉµÃµ½´ð°¸£®
£¨3£©¼ÙÉè´æÔÚÇÒÉèÖ±Ïß·½³Ìy=kx£¬¸ù¾ÝµãµÄ¶Ô³ÆÇó³öÖ±ÏßбÂʼ´¿ÉµÃµ½´ð°¸£®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌâÉèÖª£ºf¡ä(x)=
1
a
-
a-1
x2
=
x2-a(a-1)
ax2
£®
¢Ùµ±a£¼0ʱ£¬º¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ(-
a(a-1)
£¬0)
(0£¬
a(a-1)
)
£»
¢Úµ±0£¼a£¼1ʱ£¬º¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ£¨-¡Þ£¬0£©¼°£¨0£¬+¡Þ£©£»
¢Ûµ±a£¾1ʱ£¬º¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ(-¡Þ£¬-
a(a-1)
)
¼°(
a(a-1)
£¬+¡Þ)
£®
£¨¢ò£©ÓÉÌâÉè¼°£¨¢ñ£©ÖТÛÖª
a(a-1)
=
6
ÇÒa£¾1£¬½âµÃa=3£¬
Òò´Ë£¬º¯Êý½âÎöʽΪF(x)=
3
x
3
+
2
3
x
£¨x¡Ù0£©£®
£¨¢ó£©¼ÙÉè´æÔÚ¾­¹ýÔ­µãµÄÖ±ÏßlΪÇúÏßCµÄ¶Ô³ÆÖᣬÏÔÈ»x¡¢yÖá²»ÊÇÇúÏßCµÄ¶Ô³ÆÖᣬ
¹Ê¿ÉÉèl£ºy=kx£¨k¡Ù0£©£¬ÉèP£¨p£¬q£©ÎªÇúÏßCÉϵÄÈÎÒâÒ»µã£¬P'£¨p'£¬q'£©ÓëP£¨p£¬q£©¹ØÓÚÖ±Ïßl¶Ô³Æ£¬ÇÒp¡Ùp'£¬q¡Ùq'£¬
ÔòP'Ò²ÔÚÇúÏßCÉÏ£¬Óɴ˵Ã
q+q¡ä
2
=k
p+p¡ä
2
£¬
q-q¡ä
p-p¡ä
=-
1
k
£¬ÇÒq=
p
3
+
2
3
p
£¬q¡ä=
p¡ä
3
+
2
3
p¡ä
£¬
ÕûÀíµÃk-
1
k
=
2
3
£¬½âµÃk=
3
»òk=-
3
3
£¬
ËùÒÔ´æÔÚÖ±Ïßy=
3
x
¼°y=-
3
3
x
ΪÇúÏßCµÄ¶Ô³ÆÖᣮ
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éº¯ÊýµÄµ¥µ÷ÐÔÓëÆäµ¼º¯ÊýµÄÕý¸ºµÄ¹Øϵ£¬¼´µ¼º¯Êý´óÓÚ0ʱԭº¯Êýµ¥µ÷µÝÔö£¬µ¼º¯ÊýСÓÚ0ʱԭº¯Êýµ¥µ÷µÝ¼õ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf(x)=x-2m2+m+3(m¡ÊZ)Ϊżº¯Êý£¬ÇÒf£¨3£©£¼f£¨5£©£®
£¨1£©ÇómµÄÖµ£¬²¢È·¶¨f£¨x£©µÄ½âÎöʽ£»
£¨2£©Èôg£¨x£©=loga[f£¨x£©-ax]£¨a£¾0ÇÒa¡Ù1£©£¬ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹g£¨x£©ÔÚÇø¼ä[2£¬3]ÉϵÄ×î´óֵΪ2£¬Èô´æÔÚ£¬ÇëÇó³öaµÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÉϺ£Ä£Ä⣩ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÕã½­Ê¡¶«ÑôÖÐѧ¸ßÈý10Ô½׶ÎÐÔ¿¼ÊÔÊýѧÀí¿ÆÊÔÌâ ÌâÐÍ£º022

ÒÑÖªº¯Êýf(x)µÄͼÏñÔÚ[a£¬b]ÉÏÁ¬Ðø²»¶Ï£¬f1(x)£½min{f(t)|a¡Üt¡Üx}(x¡Ê[a£¬b])£¬f2(x)£½max{f(t)|a¡Üt¡Üx}(x¡Ê[a£¬b])£¬ÆäÖУ¬min{f(x)|x¡ÊD}±íʾº¯Êýf(x)ÔÚDÉϵÄ×îСֵ£¬max{f(x)|x¡ÊD}±íʾº¯Êýf(x)ÔÚDÉϵÄ×î´óÖµ£¬Èô´æÔÚ×îСÕýÕûÊýk£¬Ê¹µÃf2(x)£­f1(x)¡Ük(x£­a)¶ÔÈÎÒâµÄx¡Ê[a£¬b]³ÉÁ¢£¬Ôò³Æº¯Êýf(x)Ϊ[a£¬b]Éϵġ°k½×ÊÕËõº¯Êý¡±£®ÒÑÖªº¯Êýf(x)£½x2£¬x¡Ê[£­1£¬4]Ϊ[£­1£¬4]Éϵġ°k½×ÊÕËõº¯Êý¡±£¬ÔòkµÄÖµÊÇ_________£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉϺ£Ä£Äâ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2009-2010ѧÄêºÓÄÏÊ¡Ðí²ýÊг¤¸ðÈý¸ß¸ßÈýµÚÆߴο¼ÊÔÊýѧÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÒÑÖªº¯Êýf£¨x£©¡¢g£¨x£©£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨ £©
A£®f£¨x£©ÊÇÆ溯Êý£¬g£¨x£©ÊÇÆ溯Êý£¬Ôòf£¨x£©+g£¨x£©ÊÇÆ溯Êý
B£®f£¨x£©ÊÇżº¯Êý£¬g£¨x£©ÊÇżº¯Êý£¬Ôòf£¨x£©+g£¨x£©ÊÇżº¯Êý
C£®f£¨x£©ÊÇÆ溯Êý£¬g£¨x£©ÊÇżº¯Êý£¬Ôòf£¨x£©+g£¨x£©Ò»¶¨ÊÇÆ溯Êý»òżº¯Êý
D£®f£¨x£©ÊÇÆ溯Êý£¬g£¨x£©ÊÇżº¯Êý£¬Ôòf£¨x£©+g£¨x£©¿ÉÒÔÊÇÆ溯Êý»òżº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸