精英家教网 > 高中数学 > 题目详情
已知抛物线C:y2=2px的焦点坐标F(1,0),过F的直线L交抛物线C于A、B两点,直线AO、BO分别与直线m:x=-2相交于M、N.
(1)求抛物线C方程.
(2)求
S△ABO
S△MNO
的值.
考点:直线与圆锥曲线的关系,抛物线的标准方程
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)根据焦点的坐标,求得P即可;
(2)根据直线L与x轴是否垂直,分两种情况求解△ABO与△MNO的面积之比,验证即可.
解答: 解:(1)∵抛物线C:y2=2px的焦点坐标F(1,0),
∴抛物线C方程为y2=4x.
(2)当直线l垂直于x轴时,△ABO与△MNO相似,
S△ABO
S△MNO
=(
|OF|
2
)2
=
1
4

当直线l与x轴不垂直时,设直线AB方程为y=k(x-1),
设M(-2,yM),N(-2,yN),A(x1,y1),B(x2,y2),
y=k(x-1)
y2=4x
整理得k2x2-(4+2k2)x+k2=0,
∵∠AOB=∠MON,
∴x1•x2=1.∴
S△ABO
S△MNO
=
1
2
•AO•BO•sin∠AOB
1
2
•MO•NO•sin∠MON
=
AO
MO
BO
NO
=
1
4

综上
S△ABO
S△MNO
=
1
4
点评:本题考查直线与圆锥曲线的关系及抛物线的标准方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)对任意x∈R满足f(x)+1=
1
f(x+1)
,且x∈(0,1)时,f(x)=x,g(x)=f(x)-mx-m在(-1,0)∪(0,1)上有两个零点,则实数m的取值范围是(  )
A、(-1,1)
B、(0,
1
2
C、(0,1)
D、(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n∈R则“m>0且n>0”是“曲线
x2
m
+
y2
n
=1为椭圆”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个函数中,既是定义域上的奇函数又在区间(0,1)内单调递增的是(  )
A、y=
x
B、y=xsinx
C、y=lg
1-x
1+x
D、y=ex-e-x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(3,4),
b
=(-1,5),向量k
a
+2
b
与向量
c
=(2,-3)垂直,则k的值是(  )
A、2
B、-
17
3
C、1
D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,底面ABCD是边长为4的正方形,ED⊥平面ABCD,ED=2,EF∥BD,且2EF=BD.
(1)求证:BF⊥AC:
(2)求几何体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是射线y=2(x>1)上一点.过P作直线MN,交抛物线y2=4x于M,N两点,使点P平分线段MN.
(Ⅰ)求直线MN的斜率;
(Ⅱ)直线l:y=x+m与抛物线y2=4x无公共点,若存在一个正方形ABCD,使点A,B在直线l上,点C,D在抛物线y2=4x上,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若A,B,C为△ABC的三个内角,则
4
A
+
1
B+C
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=-x2+2|x-a|.
(1)若f(x)为偶函数,求a的值;
(2)若a=
1
2
,求函数y=f(x)的单调递增区间;
(3)求函数f(x)的最大值.

查看答案和解析>>

同步练习册答案