精英家教网 > 高中数学 > 题目详情
10.给出函数①y=x3,②y=x4+1,③y=|x|,④y=$\sqrt{x}$,其中在x=0处取得极值的函数是②③(填序号).

分析 由函数取极值的条件,逐个选项验证可得.

解答 解:选项①对y=x3求导数可得y′=3x2≥0,函数R上单调递增,
故不能在x=0处取得极值,错误;
选项②对y=x4+1求导数可得y′=4x3,函数在(-∞,0)上单调递减,
在(0,+∞)上单调递增,故在x=0处取得极小值,正确;
选项③y=|x|在(-∞,0)上单调递减,在(0,+∞)上单调递增,
故在x=0处取得极小值,正确;
选项④y=$\sqrt{x}$的定义域为[0,+∞),不满足在x=0处取得极值,错误.
故答案为:②③

点评 本题考查函数取的极值的条件,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设x,y∈R,给出四个点A(2x-1,y),B(1,1),C(x2+1,4),D(x2-1,1)
(1)若$\overrightarrow{AB}$∥$\overrightarrow{CD}$,把y表示成x的函数y=f(x);
(2)对数列{an},设a1=a2=1,且${4}^{{a}_{n+1}}$=$\frac{2}{3}$f(an)+$\frac{4}{3}$,(n≥2,n∈N*),求$\underset{lim}{n→∞}$an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列{an}中,a1=0,且对任意k∈N*,a2k-1,a2k,a2k+1成等差数列,其公差为2k,则Tn=$\frac{{2}^{2}}{{a}_{2}}+\frac{{3}^{2}}{{a}_{3}}+$…+$\frac{4{n}^{2}}{{a}_{2n}}$=4n-$\frac{3}{2}$-$\frac{1}{2n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知x、y为正数,且$\frac{3}{1+x}$+$\frac{3}{1+y}$=1,则xy的最小值为25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数y=sin(3x+$\frac{π}{3}$)cos(x-$\frac{π}{6}$)+cos(3x+$\frac{π}{3}$)cos(x+$\frac{π}{3}$)的图象关于对称轴对称的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某椭圆左焦点为F(-$\sqrt{3}$,0),点A(1,$\frac{\sqrt{3}}{2}$)在椭圆上,则求该椭圆的标准方程为$\frac{{x}^{2}}{4}$+y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知空间直角坐标系中,点A(-1,1,2),点B(-1,1,0),点C(1,1,0).
(1)求证:△ABC是等腰直角三角形.
(2)将△ABC绕直角边旋转一周得到的旋转体叫什么?并求出这个旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线C1和C2的极坐标方程分别为ρ=6$\sqrt{2}$cos(θ-$\frac{π}{4}$)和ρcos(θ+$\frac{π}{4}$)=4$\sqrt{2}$,长度为1的线段AB的两端点在曲线C2上,点P在曲线C1上,求△PAB面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在平面直角坐标系xoy中,已知曲线C1:$\left\{\begin{array}{l}{x=2t+2}\\{y=1-t}\end{array}\right.$(t为参数)与曲线C2:$\left\{\begin{array}{l}{x=asinθ}\\{y=3cosθ}\end{array}\right.$.(θ为参数,且a>0)有一个公共点在x轴上,则实数a=4.

查看答案和解析>>

同步练习册答案