【题目】已知函数,.
(Ⅰ)记的极小值为,求的最大值;
(Ⅱ)若对任意实数恒有,求的取值范围.
【答案】(Ⅰ)(Ⅱ)的取值范围是.
【解析】
试题分析:(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极小值的表达式,根据函数的单调性求出的最大值即可;
(2)通过讨论的范围,问题转化为,根据函数的单调性求出的范围即可.
试题解析:(Ⅰ)函数的定义域是,.
,得,所以的单调区间是,函数在处取极小值,
.
,当时,,在上单调递增;
当时,,在上单调递减.
所以是函数在上唯一的极大值点,也是最大值点,所以.
(Ⅱ)当时,,恒成立.
当时,,即,即.
令,,,
当时,,当,故的最小值为,
所以,故实数的取值范围是.
,,,由上面可知恒成立,
故在上单调递增,所以,
即的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知函数的图象上有一点列,点在轴上的射影是,且 (且), .
(1)求证: 是等比数列,并求出数列的通项公式;
(2)对任意的正整数,当时,不等式恒成立,求实数的取值范围.
(3)设四边形的面积是,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三次函数,
(1)若函数过点且在点处的切线方程是,求函数的解析式;
(2)在(1)的条件下,若对于区间上任意两个自变量的值,
都有,求实数的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com