精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,AB∥CD,AB=2,BC=CD=1,顶角D1在底面ABCD内的射影恰好为点C.
(1)求证:AD1⊥BC;
(2)若直线DD1与直线AB所成角为 ,求平面ABC1D1与平面ABCD所成角(锐角)的余弦值函数值.

【答案】
(1)证明:连接D1C,则D1C⊥平面ABCD,

∴D1C⊥BC

在等腰梯形ABCD中,连接AC

∵AB=2,BC=CD=1,AB∥CD

∴BC⊥AC

∴BC⊥平面AD1C

∴AD1⊥BC


(2)解法一:

∵AB∥CD∴

∵CD=1∴

在底面ABCD中作CM⊥AB,连接D1M,则D1M⊥AB,所以∠D1MC为平面ABC1D1与平面ABCD所成角的一个平面角

在Rt△D1CM中,

即平面ABC1D1与平面ABCD所成角(锐角)的余弦函数值为

解法二:

由(Ⅰ)知AC、BC、D1C两俩垂直,

∵AB∥CD∴

在等腰梯形ABCD中,连接AC因AB=2,BC=CD=1AB∥CD,

所以 ,建立如图空间直角坐标系,

,B(0,1,0),

设平面ABC1D1的一个法向量

可得平面ABC1D1的一个法向量

为平面ABCD的一个法向量.

因此

所以平面ABC1D1和平面ABCD所成的角(锐角)的余弦值为


【解析】(Ⅰ)证明:连接D1C,证明BC⊥平面AD1C,利用直线与平面垂直的性质定理证明AD1⊥BC.(Ⅱ)解法一:连接D1M,则D1M⊥AB,说明∠D1MC为平面ABC1D1与平面ABCD所成角的一个平面角,在Rt△D1CM中,求出 ,得到平面ABC1D1与平面ABCD所成角(锐角)的余弦函数值为

解法二:

由(Ⅰ)知AC、BC、D1C两俩垂直,建立如图空间直角坐标系,求出相关点的坐标,求出平面ABC1D1的一个法向量,平面ABCD的法向量.通过向量的数量积求解平面ABC1D1和平面ABCD所成的角(锐角)的余弦值.

【考点精析】通过灵活运用直线与平面垂直的性质,掌握垂直于同一个平面的两条直线平行即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,D是A1B1的中点.
(1)求证:A1C∥平面BDC1
(2)若AB⊥AC,且AB=AC= AA1 , 求二面角A﹣BD﹣C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,g(x)=﹣2xln(1+ )﹣lnf(x).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)当a=0时,函数g(x)在定义域内是否存在零点?如果存在,求出该零点;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求C1 , C2的极坐标方程;
(Ⅱ)若直线C3的极坐标方程为θ= (ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线y2=4x的焦点为F,过点F作直线l与抛物线分别交于两点A,B,若点M满足 = + ),过M作y轴的垂线与抛物线交于点P,若|PF|=2,则M点的横坐标为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数y=f(x)满足:①对于任意的x∈R,都有f(x+2)=f(x﹣2);②函数y=f(x+2)是偶函数;③当x∈(0,2]时,f(x)=ex ,a=f(﹣5),b=f( ).c=f( ),则a,b,c的大小关系是(
A.a<b<c
B.c<a<b
C.c<a<b
D.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,
PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.

(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值为 ,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了(
A.60里
B.48里
C.36里
D.24里

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x2+ax+b|在区间[0,c]内的最大值为M(a,b∈R,c>0位常数)且存在实数a,b,使得M取最小值2,则a+b+c=

查看答案和解析>>

同步练习册答案