分析 可先作出图形△ABC,并设D,E分别为边AB,AC的中点,容易得到$\overrightarrow{DE}=\frac{1}{2}\overrightarrow{BC}$,从而便有DE∥BC,且$DE=\frac{1}{2}BC$,这样便得到结论:连接三角形两边中点的线段平行于第三边且等于第三边的一半.
解答 证明:如图,△ABC,D,E分别是AB,AC边的中点;
$\overrightarrow{DE}=\overrightarrow{AE}-\overrightarrow{AD}=\frac{1}{2}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}$=$\frac{1}{2}(\overrightarrow{AC}-\overrightarrow{AB})=\frac{1}{2}\overrightarrow{BC}$;
∴$\overrightarrow{DE}$∥$\overrightarrow{BC}$,且$|\overrightarrow{DE}|=\frac{1}{2}|\overrightarrow{BC}|$;
即DE∥BC,且DE=$\frac{1}{2}BC$;
∴连接三角形两边中点的线段平行于第三边且等于第三边的一半.
点评 考查向量法证明三角形中位线的性质,向量减法的几何意义,向量数乘的几何意义,以及向量的数乘运算.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2 | B. | 2 | C. | -3 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com