【题目】在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付.出门不带现金的人数正在迅速增加。中国人民大学和法国调查公司益普索合作,调查了腾讯服务的6000名用户,从中随机抽取了60名,统计他们出门随身携带现金(单位:元)如茎叶图如示,规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”.
(1)根据上述样本数据,将列联表补充完整,并判断有多大的把握认为“手机支付族”与“性别”有关?
(2)用样本估计总体,若从腾讯服务的用户中随机抽取3位女性用户,这3位用户中“手机支付族”的人数为,求随机变量的期望和方差;
(3)某商场为了推广手机支付,特推出两种优惠方案,方案一:手机支付消费每满1000元可直减100元;方案二:手机支付消费每满1000元可抽奖2次,每次中奖的概率同为,且每次抽奖互不影响,中奖一次打9折,中奖两次打8.5折.如果你打算用手机支付购买某样价值1200元的商品,请从实际付款金额的数学期望的角度分析,选择哪种优惠方案更划算?
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
【答案】(1)列联表见解析,99%;(2),;(3)第二种优惠方案更划算.
【解析】
(1)根据已知数据得出列联表,再根据独立性检验得出结论;
(2)有数据可知,女性中“手机支付族”的概率为,知服从二项分布,即,可求得其期望和方差;
(3)若选方案一,则需付款元,若选方案二,设实际付款元,,则的取值为1200,1080,1020,求出实际付款的期望,再比较两个方案中的付款的金额的大小,可得出选择的方案.
(1)由已知得出联列表:
,所以,
有99%的把握认为“手机支付族”与“性别”有关;
(2)有数据可知,女性中“手机支付族”的概率为, ,
;
(3)若选方案一,则需付款元
若选方案二,设实际付款元,,则的取值为1200,1080,1020,
,,,
选择第二种优惠方案更划算
科目:高中数学 来源: 题型:
【题目】设函数.
(1)若,求函数在处的切线方程;
(2)若函数在和处有两个极值点,其中,.
(i)求实数的取值范围;
(ii)若(e为自然对数的底数),求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)如图,在多面体中,底面是边长为的的菱形, ,四边形是矩形,平面平面, , 和分别是和的中点.
(Ⅰ)求证:平面平面;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义在R上的偶函数,且当时,().
(1)当时,求的表达式:
(2)求在区间的最大值的表达式;
(3)当时,若关于x的方程(a,)恰有10个不同实数解,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为椭圆的左、右焦点,离心率为,点在椭圆上.
(1)求椭圆的方程;
(2)过的直线分别交椭圆于和,且,问是否存在常数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知实数a满足1<a≤2,设函数f (x)=x3-x2+ax.
(Ⅰ) 当a=2时,求f (x)的极小值;
(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,
求证:g(x)的极大值小于等于10.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com