精英家教网 > 高中数学 > 题目详情

在△ABC中,若sinC=2cosAsinB,则此三角形必是


  1. A.
    等腰三角形
  2. B.
    正三角形
  3. C.
    直角三角形
  4. D.
    等腰直角三角形
A
分析:由三角形的内角和定理及诱导公式得到sinC=sin(A+B),利用两角和与差的正弦函数公式化简,代入已知的等式中,整理后,再利用两角和与差的正弦函数公式变形,得到sin(A-B)=0,由A和B都为三角形的内角,得到A-B的范围,利用特殊角的三角函数值得到A-B=0,即A=B,从而得到三角形必是等腰三角形.
解答:由A+B+C=π,得到C=π-(A+B),
∴sinC=sin[π-(A+B)]=sin(A+B),又sinC=2cosAsinB,
∴sin(A+B)=2cosAsinB,
即sinAcosB+cosAsinB=2cosAsinB,
整理得sinAcosB-cosAsinB=sin(A-B)=0,
又A和B都为三角形的内角,∴-π<A-B<π,
∴A-B=0,即A=B,
则此三角形必是等腰三角形.
故选A
点评:此题考查了三角形形状的判断,涉及的知识有两角和与差的正弦函数公式,诱导公式,三角形的内角和定理,以及特殊角的三角函数值,根据已知的等式,利用三角函数的恒等变换得到sin(A-B)=0是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若sinC(cosA+cosB)=sinA+sinB.
(1)求∠C的度数;
(2)在△ABC中,若角C所对的边c=1,试求内切圆半径r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若sinC=2cosAsinB,则此三角形必是 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若b=2c•cosA,则这个三角形一定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若sinC<sin(A-B),则△ABC的形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2
x
2
+
π
12
)+
3
sin(
x
2
+
π
12
)cos(
x
2
+
π
12
)一
1
2

(1)在△ABC中,若sinC=2sinA,B为锐角且有f(B)=
3
2
,求角A,B,C;
(2)若f(x)(x>0)的图象与直线y=
1
2
交点的横坐标由小到大依次是x1,x2,…,xn,求数列{xn}的前2n项和,n∈N*

查看答案和解析>>

同步练习册答案