精英家教网 > 高中数学 > 题目详情
“因为
a
=(1,0),
b
=(0,-1),所以
a
b
=(1,0)•(0,-1)=1×0+0×(-1)=0,所以
a
b
”中,大前提是
 
考点:演绎推理的基本方法
专题:推理和证明
分析:由演绎推理的基本规则,大前提是一个一般性的结论,本题中研究的是向量垂直的充要条件,故由向量垂直的充要条件易得答案.
解答: 解:将“因为
a
=(1,0),
b
=(0,-1),所以
a
b
=(1,0)•(0,-1)=1×0+0×(-1)=0,所以
a
b
”改编为三段论,
其中大前提是“若
a
b
=0,则
a
b
”,
故答案为:若
a
b
=0,则
a
b
点评:本题考查进行简单的演绎推理,解题的关键是对演绎推理的规则有着熟练的掌握,再就是熟练掌握了对数的性质,本题是概念型题,知识性理论性较强
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、B、C、D、E、F六人排成一排,要求A在B前且C在D前,则共有的排法总数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2(x)-2(a-1)sinx•cosx+5cos2(x)+2-a,试推断是否存在常数a,使f(x)的最大值为6?若存在,求出a值:若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)是幂函数,h(x)=ax-1,f(x)=h(x)-g(x),且函数f(x)的图象过点(4,-
7
2
)和(1,1)两点.
(1)求f(x)的解析式;
(2)求函数f(x)的单调区间,判断函数在区间[-2,3]上是否存在最大值或最小值;若存在,求出对应的最值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

锐角三角形ABC的内角分别是A,B,C,并且A>B,是否有sinA+sinB>cosA+cosB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),(x∈D),若同时满足以下条件:
①f(x)在D上单调递减或单调递增;
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域是[a,b](a<b).那么撑f(x)(x∈D)为闭函数.
(1)求闭函数f(x)=
x
符合条件②的区间[a,b];
(2)判断函数y=lnx+3x-6是不是闭函数,若是请找出区间[a,b],若不是请说明理由;
(3)若y=(x-k)2,x∈(k,+∞)是闭函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:x+my+1=0与l2:mx+y+1=0
(1)当l1⊥l2时,求m;
(2)当l1∥l2时,求m.

查看答案和解析>>

科目:高中数学 来源: 题型:

“x>1”是“ln(ex+1)>1”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:
3-4cos2A+cos4A
3+4cos2A+cos4A
=tan4A.

查看答案和解析>>

同步练习册答案