【题目】若函数与的图像有两个不同交点,则实数的取值范围是( )
A. B. C. D.
【答案】C
【解析】函数过点,函数,也过点,即函数与的图至少有一个交点, ,函数在点处的切线方程为, 由,得时, ,此时是的切线,即时,函数与函数都在处与直线相切,因为的图象下凹, 的图象上凸,所以与的图象只有一个交点,当时,抛物线开口变小,在区间上与的图象有一个交点,共有两个公共点,当时,抛物线开口变大,在上有一个交点,共有两个,综上函数与的图象有两个不同交点,则实数的取值范围是,故选C.
【方法点晴】本题主要考查利用导数求曲线切线方程以及利用导数研究函数的图象与性质,属于难题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点 出的切线斜率(当曲线在处的切线与轴平行时,在 处导数不存在,切线方程为);(2)由点斜式求得切线方程.
科目:高中数学 来源: 题型:
【题目】函数的性质通常指函数的定义域、值域、周期性、单调性、奇偶性、对称性等,请选择适当的探究顺序,研究函数的性质,并在此基础上填写下表,作出f(x)在区间[-π,2π]上的图象.
性质 | 理由 | 结论 | 得分 |
定义域 | |||
值域 | |||
奇偶性 | |||
周期性 | |||
单调性 | |||
对称性 | |||
作图 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假设某种设备使用的年限x(年)与所支出的维修费用y(万元)有以下统计资料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
维修费用y | 2 | 4 | 5 | 6 | 7 |
若由资料知y对x呈线性相关关系。试求:
(1)求; (2)线性回归方程;
(3)估计使用10年时,维修费用是多少?
附:利用“最小二乘法”计算a,b的值时,可根据以下公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lg的图象关于原点对称,其中a为常数.
(Ⅰ)求a的值,并求出f(x)的定义域
(Ⅱ)关于x的方程f(2x)+21g(2x-1)=a在x∈[,]有实数解,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)求函数的单调递增区间;
(2)当时,方程恰有两个不同的实数根,求实数的取值范围;
(3)将函数的图象向右平移个单位后所得函数的图象关于原点中心对称,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是
A. 对分类变量X与Y,随机变量K2的观测值k越大,则判断“X与Y有关系”的把握程度越小
B. 在回归直线方程=0.2x+0.8中,当解释变量x每增加1个单位时,预报变量平均增加0.2个单位
C. 两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1
D. 回归直线过样本点的中心(, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明MN∥平面PAB;
(2)求四面体N﹣BCM的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com