精英家教网 > 高中数学 > 题目详情

【题目】若函数的图像有两个不同交点,则实数的取值范围是( )

A. B. C. D.

【答案】C

【解析】函数函数也过即函数的图至少有一个交点 函数点处的切线方程为 此时的切线,即函数与函数都在处与直线相切,因为的图象下凹, 的图象上凸,所以的图象只有一个交点,当抛物线开口变小,在区间的图象有一个交点共有两个公共点,当抛物线开口变大,在上有一个交点共有两个,综上函数的图象有两个不同交点,则实数的取值范围是故选C.

【方法点晴】本题主要考查利用导数求曲线切线方程以及利用导数研究函数的图象与性质,属于难题.求曲线切线方程的一般步骤是:(1)求出处的导数,即在点 出的切线斜率(当曲线处的切线与轴平行时,在 处导数不存在,切线方程为);(2)由点斜式求得切线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数的性质通常指函数的定义域、值域、周期性、单调性、奇偶性、对称性等,请选择适当的探究顺序,研究函数的性质,并在此基础上填写下表,作出fx)在区间[-π,2π]上的图象.

性质

理由

结论

得分

定义域

值域

奇偶性

周期性

单调性

对称性

作图

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设某种设备使用的年限x(年)与所支出的维修费用y(万元)有以下统计资料:

使用年限x

2

3

4

5

6

维修费用y

2

4

5

6

7

若由资料知y对x呈线性相关关系。试求:

(1)求; (2)线性回归方程

(3)估计使用10年时,维修费用是多少?

附:利用“最小二乘法”计算a,b的值时,可根据以下公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lg的图象关于原点对称,其中a为常数.

(Ⅰ)求a的值,并求出fx)的定义域

(Ⅱ)关于x的方程f(2x)+21g(2x-1)=ax∈[]有实数解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是定义在(0,+∞)上的增函数,且满足fxy)=fx)+fy),f(2)=1.

(1)求f(8)的值;

(2)求不等式fx)-fx-2)>3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二项式 的展开式.

(1)求展开式中含项的系数;

(2)如果第项和第项的二项式系数相等,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调递增区间;

(2)当时,方程恰有两个不同的实数根,求实数的取值范围;

(3)将函数的图象向右平移个单位后所得函数的图象关于原点中心对称,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是

A. 对分类变量XY,随机变量K2的观测值k越大,则判断“XY有关系的把握程度越小

B. 在回归直线方程=0.2x+0.8中,当解释变量x每增加1个单位时,预报变量平均增加0.2个单位

C. 两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1

D. 回归直线过样本点的中心(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明MN∥平面PAB;
(2)求四面体N﹣BCM的体积.

查看答案和解析>>

同步练习册答案