精英家教网 > 高中数学 > 题目详情
以数列{an}的任意两项为坐标的点Pn(an,an+1)(n∈N*)均在一次函数y=2x+8的图象上,数列{bn}满足条件:bn=an+1-an(n∈N*,b1≠0)且a1=1.

(文)求数列{bn}的前n项和Tn.

(理)求数列{an}的前n项和Sn和数列{bn}的前n项和Tn.

解析:(文)由题意an+1=2an+8,

    bn=an+1-an=an+8.

    bn+1=an+1+8=2an+16.∴=2.

    b1=a2-a1=2a1+8-a1=a1+8=9.

    ∴bn=9×2n-1.

    Tn===9×(2n-1).

    (理)由题意an+1=2an+8,

   bn=an+1-an=an+8.

    bn+1=an+1+8=2an+16.∴=2.

    b1=a2-a1=2a1+8-a1=a1+8=9.

    ∴bn=9×2n-1.

    Tn===9×(2n-1).

    由bn=an+8,得an=bn-8=9×2n-1-8,

    Sn=(9-8)+(9×2-8)+(9×22-8)+…+(9×2n-1-8)

    =9(1+2+22+…+2n-1)-8n

    =-8n

    =9×(2n-1)-8n

    =9×2n-8n-9.

练习册系列答案
相关习题

科目:高中数学 来源:高中数学全解题库(国标苏教版·必修4、必修5) 苏教版 题型:044

以数列{an}的任意相邻两项为坐标的点Pn(an,an+1)(n∈N*)均在一次函数y=2x+k的图象上,数列{bn}满足条件bn=an+1-an(n∈N*,b1≠0).

(1)求证:数列{bn}是等比数列;

(2)设数列{an},{bn}的前n项和分别为SnTn,若S6T4S5=-9,求k的值.

查看答案和解析>>

科目:高中数学 来源:2007届东莞市高三文科数学高考模拟题(二) 题型:044

以数列{an}的任意相邻两项为坐标的点Pn(an,an+1)(n∈N)均在一次函数y=2x+k的图象上,数列{bn}满足条件:bn=an+1-an(n∈N,b1≠0),

(1)求证:数列{bn}是等比数列;

(2)设数列{an},{bn}的前n项和分别为Sn,Tn,若S6=T4,S5=-9,求k的值.

查看答案和解析>>

科目:高中数学 来源:江苏省泗洪县实验中学2008届高三第三次月考数学试卷 题型:044

以数列{an}的任意相邻两项为坐标的点Pn(an,an+1)(n∈N*)均在一次函数y=2x+k,(k≠0)的图象上,数列{bn}满足条件:bn=an+1-an(n∈N*),

(1)求证:数列{bn}是等比数列;

(2)设数列{an}、{bn}的前n项和分别为Sn、Tn,若S6=T4,S5=-9,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

以数列{an}的任意相邻的两项为坐标的点Pn(an,an+1)(n∈N*)均在一次函数y=2x+k的图象上,数列{bn}满足条件:bn=an+1-an(n∈N*b1≠0).

(1)求证:数列{bn}是等比数列;

(2)设数列{an}、{bn}的前n项和分别为Sn、Tn,若S6=T4,S5=-9,求k的值.

查看答案和解析>>

同步练习册答案