精英家教网 > 高中数学 > 题目详情
5.下列函数中既是奇函数,又在区间(0,1)上是增函数的为(  )
A.y=lnxB.y=3xC.y=sinxD.y=x2

分析 在A中,y=lnx是非奇非偶函数;在B中,y=3x是非奇非偶函数;在C中,y=sinx既是奇函数,又在区间(0,1)上是增函数;在D中,y=x2是偶函数.

解答 解:在A中,y=lnx是非奇非偶函数,在区间(0,1)上是增函数,故A错误;
在B中,y=3x是非奇非偶函数,在区间(0,1)上是增函数,故B错误;
在C中,y=sinx既是奇函数,又在区间(0,1)上是增函数,故C正确;
在D中,y=x2是偶函数,在区间(0,1)上是增函数,故D错误.
故选:C.

点评 本题考查函数的奇偶性和单调性的判断,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.下列命题中:
①在△ABC中,若cosA<cosB,则A>B;
②若函数f(x)的导数为f'(x),f(x0)为f(x)的极值的充要条件是f'(x0)=0;
③函数y=|tan(2x+$\frac{π}{3}$)|的最小正周期为$\frac{π}{2}$;
④同一直角坐标系中,函数f(x)=sinx的图象与函数f(x)=x的图象仅有三个公共点.
其中真命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设x,y满足条件$\left\{\begin{array}{l}x+y-2≥0\\ x-y-2≤0\\ y≤2\end{array}\right.$,则z=2x+3y的最小值是(  )
A.4B.6C.10D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,左焦点为F(-1,0),过点D(0,2)且斜率为k的直线l交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)在y轴上,是否存在定点E,使$\overrightarrow{AE}•\overrightarrow{BE}$恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线$x-\sqrt{3}y+5=0$的倾斜角是30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若半径为2的球O内切于一个正三棱柱ABC-A1B1C1中,则该三棱柱的体积为48$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知不过第二象限的直线l:ax-y-4=0与圆x2+(y-1)2=5相切.
(1)求直线l的方程;
(2)若直线l1过点(3,-1)且与直线l平行,直线l2与直线l1关于直线y=1对称,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若数列{an}满足an=$\frac{{a}_{n-1}}{{a}_{n-2}}$(n∈N*,n≥3),a1=2,a5=$\frac{1}{3}$,则a2016等于$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆B:(x-1)2+(y-1)2=2,过原点O作两条不同的直线l1,l2与圆B都相交.
(1)从B分别作l1,l2的垂线,垂足分别为A,C,若$\overrightarrow{BA}•\overrightarrow{BC}=0$,$|\overrightarrow{BA}|=|\overrightarrow{BC}|$,求直线AC的方程;
(2)若l1⊥l2,且l1,l2与圆B分别相交于P,Q两点,求△OPQ面积的最大值.

查看答案和解析>>

同步练习册答案