精英家教网 > 高中数学 > 题目详情

【题目】为了解适龄公务员对开放生育二胎政策的态度,某部门随机调查了90位三十岁到四十岁的公务员,得到如下列联表,因不慎丢失部分数据.
(1)完成表格数据,判断是否有99%以上的把握认为“生二胎意愿与性别有关”并说明理由;
(2)已知15位有意愿生二胎的女性公务员中有两位来自省妇联,该部门打算从这15位有意愿生二胎的女性公务员中随机邀请两位来参加座谈,设邀请的2人中来自省妇联的人数为X,求X的分布列及数学期望E(X).

男性公务员

女性公务员

总计

有意愿生二胎

15

45

无意愿生二胎

25

总计

P(k2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

附:

【答案】
(1)解:

男性公务员

女性公务员

总计

有意愿生二胎

30

15

45

无意愿生二胎

20

25

45

总计

50

40

90

由于K2= =4.5<6.635,

故没有99%以上的把握认为“生二胎意愿与性别有关”


(2)解:由题意可得,一名男公务员要生二胎意愿的概率为 = ,无意愿的概率为 ,记事件A:这三人中至少有一人要生二胎,且各人意愿相互独立.

则P(A)=1﹣P =1﹣ =

答:这三人中至少有一人有意愿生二胎的概率为

X可能的取值为0,1,2.利用P(X=k)= ,可得P(X=0)= ,P(X=1)= ,得P(X=2)=

X

0

1

2

P

E(X)=0+1× +2× =


【解析】(1)直接利用k2运算法则求解,判断生二胎意愿与性别是否有关的结论;(2)求出X的可能值,求出概率,得到分布列,然后求解期望.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过点(0,2)的直线l与中心在原点,焦点在x轴上且离心率为 的椭圆C相交于A、B两点,直线 过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l对称.
(1)求直线l的方程;
(2)求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱A1B1C1﹣ABC的侧棱AA1⊥底面ABC,AB⊥AC,AB=AA1 , D是棱CC1的中点.

(Ⅰ)证明:平面AB1C⊥平面A1BD;
(Ⅱ)在棱A1B1上是否存在一点E,使C1E∥平面A1BD?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱锥中, 是正方形, 是正方形的中心, 底面 的中点.

(I)证明: 平面

(II)证明:平面平面

(III)已知: ,求点到面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为1的正方形内作两个互相外切的圆,同时每一个圆又与正方形的两相邻边相切,当一个圆为正方形内切圆时半径最大,另一圆半径最小,记其中一个圆的半径为x,两圆的面积之和为S,将S表示为x的函数。

求:(1)函数的解析式;

(2)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱 平面 在线段 .

1)求证:

2)试探究:在上是否存在点满足平面若存在请指出点的位置并给出证明若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速单位: 与其耗氧量单位数之间的关系可以表示为函数其中为常数,已知一条鲑鱼在静止时的耗氧量为100个单位;而当它的游速为时,其耗氧量为2700个单位.

1)求出游速与其耗氧量单位数之间的函数解析式;

(2)求当一条鲑鱼的游速不高于时,其耗氧量至多需要多少个单位?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在棱长为4的正方体ABCD﹣A1B1C1D1中,点E是棱CC1的中点,则异面直线D1E与AC所成角的余弦值是

查看答案和解析>>

同步练习册答案