【题目】若函数的图像与的图像交于不同的两点,线段的中点为
(1)求实数的取值范围;
(2)证明:
【答案】(1)(2)证明见解析;
【解析】
(1)设,转化为有两个零点时的取值范围,求,求出单调区间,确定极值,结合零点存在性定理,即可求解;
(2)将所证的不等式用表示,,再令,转化为证明 ,再等价转化构造函数,,利用求导研究函数的单调性,即可证明不等式.
(1)设,
题意即有两个不同的零点,,
当时,,在上单调递增,
至多一个零点,不满足题意.
当时,令,得,
当时,,单调递减,
当时,,单调递增,
所以时,取得极小值,
也是最小值为
若即,则至多一个零点,不满足题意.
若即,则由,
知在存在一个零点,
又.
设在上恒成立,
,所以.
所以在存在一个零点,
从而有个两个不同零点,满足题意.
综上,实数的取值范围是.
(2)要证只要证
只需证
不妨设,即证
要证,只需证,
设,则
所以在上为增函数,
从而,即成立.
要证,只需证
设.则
所以在上为减函数,从而,
即中上成立,
所以成立,即.
科目:高中数学 来源: 题型:
【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸之间近似满足关系式(b,c为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现随机抽取6件合格产品,测得数据如下:
尺寸x(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
质量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
质量与尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(1)现从抽取的6件合格产品中再任选2件,求选中的2件均为优等品的概率;
(2)根据测得数据作了初步处理,得相关统计量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
根据所给统计量,求y关于x的回归方程.
附:对于样本,其回归直线的斜率和截距的最小二乘估计公式分别为:,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,短轴长为.
(1)求椭圆的标准方程;
(2)若椭圆的左焦点为,过点的直线与椭圆交于两点,则在轴上是否存在一个定点使得直线的斜率互为相反数?若存在,求出定点的坐标;若不存在,也请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在矩形中,,沿直线BD将△ABD折成,使得点在平面上的射影在内(不含边界),设二面角的大小为,直线 ,与平面中所成的角分别为,则( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某生活超市有一专柜预代理销售甲乙两家公司的一种可相互替代的日常生活用品.经过一段时间分别单独试销甲乙两家公司的商品,从销售数据中随机各抽取50天,统计每日的销售数量,得到如下的频数分布条形图.甲乙两家公司给该超市的日利润方案为:甲公司给超市每天基本费用为90元,另外每销售一件提成1元;乙公司给超市每天的基本费用为130元,每日销售数量不超过83件没有提成,超过83件的部分每件提成10元.
(Ⅰ)求乙公司给超市的日利润(单位:元)与日销售数量的函数关系;
(Ⅱ)若将频率视为概率,回答下列问题:
(1)求甲公司产品销售数量不超过87件的概率;
(2)如果仅从日均利润的角度考虑,请你利用所学过的统计学知识为超市作出抉择,选择哪家公司的产品进行销售?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂加工的零件按箱出厂,每箱有10个零件,在出厂之前需要对每箱的零件作检验,人工检验方法如下:先从每箱的零件中随机抽取4个零件,若抽取的零件都是正品或都是次品,则停止检验;若抽取的零件至少有1个至多有3个次品,则对剩下的6个零件逐一检验.已知每个零件检验合格的概率为0.8,每个零件是否检验合格相互独立,且每个零件的人工检验费为2元.
(1)设1箱零件人工检验总费用为元,求的分布列;
(2)除了人工检验方法外还有机器检验方法,机器检验需要对每箱的每个零件作检验,每个零件的检验费为1.6元.现有1000箱零件需要检验,以检验总费用的数学期望为依据,在人工检验与机器检验中,应该选择哪一个?说明你的理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,斜三棱柱中,是边长为2的正三角形,为的中点,平面,点在上,,为与的交点,且与平面所成的角为.
(1)求证:平面;
(2)求二面角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com