精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1的左、右焦点分别F1、F2,O为双曲线的中心,P是双曲线右支上的点,△PF1F2的内切圆的圆心为I,且⊙I与x轴相切于点A,过F2作直线PI的垂线,垂足为B,若e为双曲线的率心率,则(  )
A、|OB|=e|OA|
B、|OA|=e|OB|
C、|OB|=|OA|
D、|OA|与|OB|关系不确定
分析:根据题意,利用切线长定理,再利用双曲线的定义,把|PF1|-|PF2|=2a,转化为|AF1|-|AF2|=2a,从而求得点H的横坐标.再在三角形PCF2中,由题意得,它是一个等腰三角形,从而在三角形F1CF2中,利用中位线定理得出OB,从而解决问题.
解答:精英家教网解:F1(-c,0)、F2(c,0),内切圆与x轴的切点是点A
∵|PF1|-|PF2|=2a,及圆的切线长定理知,
|AF1|-|AF2|=2a,设内切圆的圆心横坐标为x,
则|(x+c)-(c-x)|=2a
∴x=a;
|OA|=a,
在三角形PCF2中,由题意得,它是一个等腰三角形,PC=PF2
∴在三角形F1CF2中,有:
OB=
1
2
CF1=
1
2
(PF1-PC)=
1
2
(PF1-PF2)=
1
2
×2a=a.
∴|OB|=|OA|.
故选C.
点评:本题考查双曲线的定义、切线长定理.解答的关键是充分利用平面几何的性质,如三角形内心的性质等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
7
=1
,直线l过其左焦点F1,交双曲线的左支于A、B两点,且|AB|=4,F2为双曲线的右焦点,△ABF2的周长为20,则此双曲线的离心率e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
的一个焦点与抛物线y2=4x的焦点重合,且该双曲线的离心率为
5
,则该双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(b>a>0)
,O为坐标原点,离心率e=2,点M(
5
3
)
在双曲线上.
(1)求双曲线的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
=0
.问:
1
|OP|2
+
1
|OQ|2
是否为定值?若是请求出该定值,若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知直线l:kx-y+1+2k=0(k∈R),则该直线过定点
(-2,1)
(-2,1)

(2)已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为y=
4
3
x,则双曲线的离心率为
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)满足
a1
b
2
 |=0
,且双曲线的右焦点与抛物线y2=4
3
x
的焦点重合,则该双曲线的方程为
 

查看答案和解析>>

同步练习册答案