精英家教网 > 高中数学 > 题目详情
已知数列{an}、{bn},其中,a1=
1
2
,数列{an}的前n项和Sn=n2an(n∈N*),数列{bn}满足b1=2,bn+1=2bn
(1)求数列{an}、{bn}的通项公式;
(2)是否存在自然数m,使得对于任意n∈N*,n≥2,有1+
1
b1
+
1
b2
+…+
1
bn
m-8
4
恒成立?若存在,求出m的最小值;
(3)若数列{cn}满足cn=
1
nan
,n为奇数
bn,n为偶数
,求数列{cn}的前n项和Tn
考点:数列与不等式的综合
专题:综合题,不等式的解法及应用
分析:(1)根据题设条件用累乘法能够求出数列{an}的通项公式.b1=2,bn+1=2bn可知{bn}是首项为2,公比为2的等比数列,由此能求出{bn}的通项公式.
(2)bn=2n.假设存在自然数m,使得对于任意n∈N*,n≥2,有1+
1
b1
+
1
b2
+…+
1
bn
m-8
4
恒成立,由此能导出m的最小值.
(3)当n是奇数时,Tn=(
1
a1
+
1
3a3
+…+
1
nan
)+(b2+b4+…+bn-1)
,当n是偶数时,Tn=[
1
a1
+
1
3a3
+…+
1
(n-1)an-1
]+(b2+b4+…+bn)
,由此能推导出当n是偶数时,求数列{cn}的前n项和Tn
解答: 解:(1)因为Sn=n2an(n∈N*)
当n≥2时,Sn-1=(n-1)2an-1
所以an=Sn-Sn-1=n2an-(n-1)2an-1
所以(n+1)an=(n-1)an-1,即
an
an-1
=
n-1
n+1
. …2分
a1=
1
2

所以an=
an
an-1
an-1
an-2
an-2
an-3
a3
a2
a2
a1
a1
=
n-1
n+1
n-2
n
n-3
n-1
•…•
2
4
1
3
1
2
=
1
n(n+1)
.…4分
当n=1时,上式成立,
因为b1=2,bn+1=2bn,所以{bn}是首项为2,公比为2的等比数列,
bn=2n.…6分
(2)由(1)知bn=2n,则1+
1
b1
+
1
b2
+…+
1
bn
=1+
1
2
+
1
22
+…+
1
2n
=2-
1
2n

假设存在自然数m,使得对于任意n∈N*,n≥2,有1+
1
b1
+
1
b2
+…+
1
bn
m-8
4
恒成立,即2-
1
2n
m-8
4
恒成立,由
m-8
4
≥2
,解得m≥16.…9分
所以存在自然数m,使得对于任意n∈N*,n≥2,有1+
1
b1
+
1
b2
+…+
1
bn
m-8
4
恒成立,
此时,m的最小值为16.…11分
(3)当n为奇数时,Tn=(
1
a1
+
1
3a3
+…+
1
nan
)+(b2+b4+…+bn-1)

=[2+4+…+(n+1)]+(22+24+…+2n-1)=
2+n+1
2
n+1
2
+
4(1-4
n-1
2
)
1-4
=
n2+4n+3
4
+
4
3
(2n-1-1)
;…13分
当n为偶数时,Tn=[
1
a1
+
1
3a3
+…+
1
(n-1)an-1
]+(b2+b4+…+bn)
=(2+4+…+n)+(22+24+…+2n
=
2+n
2
n
2
+
4(1-4
n
2
)
1-4
=
n2+2n
4
+
4
3
(2n-1)
.…15分
因此Tn=
n2+4n+3
4
+
4
3
(2n-1-1),n为奇数
n2+2n
4
+
4
3
(2n-1),n为偶数
. …16分.
点评:本题是考查数列知识的综合运用题,难度较大,在解题时要认真审题,仔细作答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一批产品有A,B,C三种型号,数量分别是120件,80件,60件.为了解它们的质量是否存在差异,用分层抽样的方法抽取了一个容量为n的样本,其中从型号C的产品中抽取了3件,则n的值是(  )
A、9B、10C、12D、13

查看答案和解析>>

科目:高中数学 来源: 题型:

为了得到函数y=3cos(2x-
π
3
)的图象,只需要把函数y=3cos(2x)的图象上所有的点(  )
A、向右平移
π
6
B、向右平移
π
3
C、向左平移
π
6
D、向左平移
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设l,m是两条不同的直线,a是一个平面,则下列命题正确的是(  )
A、若l⊥m,m⊥a,则l∥a
B、若m⊥l,l?a,则m⊥a
C、若m∥l,l∥a,则m∥a
D、若l⊥a,m⊥a,则l∥m

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)和椭圆C2:x2+y2=r2都过点(0,-1),且椭圆C1的离心率为
3
2

(Ⅰ) 求椭圆C1和C2的方程;
(Ⅱ) 如图,A,B分别为椭圆C1的左右顶点,P(x0,y0)为圆C2上的动点.过点P作圆C2的切线l,交椭圆C1与不同的两点C,D,且l与x轴的交点为M,直线AC与直线DB的交点为N.
(i) 求切线l的方程;
(ii) 问点M,N的横坐标之积是否为定值?若是定值,求出此定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
1
2+sinx
,x∈[-
π
6
4
]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(2
1
4
 
3
2
+0.1-2+(
1
27
 
1
3
+2π0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形,AB⊥平面AA1C1C,AB=3.
(Ⅰ)求直线A C1与直线A1B夹角的余弦值;
(Ⅱ)求二面角A1-BC1-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图1所示的四边形ABCD中,∠ABD=∠BDC=
π
2
,∠C=
π
6
,AB=BD=2.现将△ABD沿BD翻折,如图2所示.
(Ⅰ)若二面角A-BD-C为直二面角,求证:AB⊥DC;
(Ⅱ)设E为线段BC上的点,当△ABE为等边三角形时,求二面角A-BD-C的余弦值.

查看答案和解析>>

同步练习册答案