精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,若存在x1 , x2 , 当0≤x1<x2<2时,f(x1)=f(x2),则x1f(x2)﹣f(x2)的取值范围为( )
A.
B.
C.
D.

【答案】B
【解析】解:作出函数的图象:
∵存在x1 , x2 , 当0≤x1<x2<2时,f(x1)=f(x2
∴0≤x1
∵x+ 在[0, )上的最小值为
2x1在[ ,2)的最小值为
∴x1+ ,x1
≤x1
∵f(x1)=x1+ ,f(x1)=f(x2
∴x1f(x2)﹣f(x2)=x1f(x1)﹣f(x1)2
= ﹣(x1+ )=x12 x1
设y=x12 x1 =(x12 ,( ≤x1 ),
则对应抛物线的对称轴为x=
∴当x= 时,y=﹣
当x= 时,y=
即x1f(x2)﹣f(x2)的取值范围为[﹣ ).
故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,设为常数).

(1)求的最小值及相应的的值;

(2)设,若,求的取值范围;

(3)若对任意,以为三边长总能构成三角形,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥S﹣ABCD,SB⊥AD,侧面SAD是边长为4的等边三角形,底面ABCD为菱形,侧面SAD与底面ABCD所成的二面角为120°.

(1)求点S到平面ABCD的距离;
(2)若E为SC的中点,求二面角A﹣DE﹣C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海关对同时从三个不同地区进口的某种商品进行随机抽样检测已知从三个地区抽取的商品件数分别是50,150,100.检测人员再用分层抽样的方法从海关抽样的这些商品中随机抽取6件样品进行检测.

1)求这6件样品中,来自各地区商品的数量

2)若在这6件样品中随机抽取2件送往另一机构进行进一步检测,求这2件样品来自相同地区的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在多面体中, 均为边长为2的正方形, 为等腰直角三角形, ,且平面平面,平面平面.

(Ⅰ)求证:平面平面

(Ⅱ)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽配厂生产某种零件,每个零件的出厂单价为60元,为了鼓励更多销售商订购,该厂决定当一次订购超过100个时,每多订购一个,订购的全部零件的出厂单价就降低元,但实际出厂单价不低于51元.

当一次订购量最少为多少时,零件的实际出厂单价恰好为51元?

设一次订购量为x个,零件的实际出厂单价为p元,写出函数的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个几何体挖去部分后的三视图如图所示,若其正视图和侧视图都是由三个边长为2的正三角形组成,则该几何体的表面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),直线l的参数方程为 (t为参数),l与C分别交于M,N,P(﹣2,﹣4).
(1)写出C的平面直角坐标系方程和l的普通方程;
(2)已知|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国许多省市雾霾天气频发,为增强市民的环境保护意识,某市面向全市征召n名义务宣传志愿者,成立环境保护宣传组织现把该组织的成员按年龄分成5组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示,已知第2组有70人.

(1)求该组织的人数.

(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加某社区的宣传活动,然后在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有一名志愿者被抽中的概率.

查看答案和解析>>

同步练习册答案