分析 (Ⅰ)设椭圆C的标准方程为:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0),由F1F2|=2,点P(1,$\frac{3}{2}$)在该椭圆上,列出方程组,求出a,b,由此能求出椭圆C的方程及其离心率.
(Ⅱ)设直线l的方程为x=ty-1,由$\left\{\begin{array}{l}{x=ty-1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得:(4+3t2)y2-6ty-9=0,由此利用根的判别式、韦达定理、弦长公式,结合已知条件能求出以F2为圆心且与直线l相切的圆的方程.
解答 解:(Ⅰ)∵椭圆C的对称中心为原点O,焦点在x轴上,
∴设椭圆C的标准方程为:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0),
∵左右焦点分别为F1和F2且F1F2|=2,点P(1,$\frac{3}{2}$)在该椭圆上,
∴$\left\{\begin{array}{l}{2c=2}\\{\frac{{1}^{\;}}{{a}^{2}}+\frac{9}{4{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=2,b=$\sqrt{3}$,
∴椭圆C的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,
离心率e=$\frac{c}{a}=\frac{1}{2}$.
(Ⅱ)设直线l的方程为x=ty-1,
由$\left\{\begin{array}{l}{x=ty-1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,消去x,得:(4+3t2)y2-6ty-9=0,
∵△>0恒成立,
设A(x1,y1),B(x2,y2),∴${y}_{1}+{y}_{2}=\frac{6t}{4+3{t}^{2}}$,${y}_{1}{y}_{2}=\frac{-9}{4+3{t}^{2}}$,
∴|y1-y2|=$\frac{12\sqrt{{t}^{2}+1}}{4+3{t}^{2}}$,|F1F2|=2,圆F2的半径为r=$\frac{2}{\sqrt{{t}^{2}+1}}$,
∵${S}_{△A{F}_{2}B}$=$\frac{1}{2}×$|y1-y2|×|F1F2|=$\frac{1}{2}×\frac{12\sqrt{{t}^{2}+1}}{4+3{t}^{2}}$×2=$\frac{12\sqrt{2}}{7}$,
∴$\frac{12\sqrt{{t}^{2}+1}}{4+3{t}^{2}}$=$\frac{12\sqrt{2}}{7}$,∴t2=1,
∴r=$\frac{2}{\sqrt{{t}^{2}+1}}$=$\sqrt{2}$,
∴以F2为圆心且与直线l相切的圆的方程为(x-1)2+y2=2.
点评 本题考查椭圆方程及其离心率的求法,考查圆的方程的求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、弦长公式、椭圆性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\left\{\begin{array}{l}{a>0}\\{4{b}^{2}-\frac{4}{3}ac<0}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{a>0}\\{4{b}^{2}-\frac{4}{3}ac>0}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{a<0}\\{4{b}^{2}-\frac{4}{3}ac>0}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{a<0}\\{4{b}^{2}-\frac{4}{3}ac<0}\end{array}\right.$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$-1 | B. | $\sqrt{2}$ | C. | $\sqrt{2}$+2 | D. | $\sqrt{2}$+1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com