精英家教网 > 高中数学 > 题目详情
(2012•虹口区三模)已知圆G:x2+y2-2x-
2
y=0
经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F及上顶点B.
(1)求椭圆的方程;
(2)过椭圆外一点M(m,0)(m>a)倾斜角为
5
6
π
的直线l交椭圆于C、D两点,若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.
分析:(1)利用圆的方程,确定F,B的坐标,进而可得椭圆的方程;
(2)设直线l的方程与椭圆方程联立,利用韦达定理及右焦点F在以线段CD为直径的圆E的外部,建立不等式,即可确定m的取值范围.
解答:解:(1)∵圆G:x2+y2-2x-
2
y=0
经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F及上顶点B.
∴F(2,0),B(0,
2
)

∴c=2,b=
2

∴a2=6
∴椭圆的方程为
x2
6
+
y2
2
=1

(2)设直线l的方程为y=-
3
3
(x-m)(m>
6
)

x2
6
+
y2
2
=1
y=-
3
3
(x-m)
得2x2-2mx+(m2-6)=0
由△=4m2-8(m2-6)>0,可得-2
3
<m<2
3

m>
6
,∴
6
<m<2
3
(10分)
设C(x1,y1),D(x2,y2),则x1+x2=m,x1x2=
m2-6
2

y1y2=[-
3
3
(x1-m)]•[-
3
3
(x2-m)]=
1
3
x1x2-
m
3
(x1+x2)+
m2
3

FC
=(x1-2,y1)
FD
=(x2-2,y2)

FC
FD
=(x1-2)(x2-2)+y1y2=
4
3
x1x2-
(m+6)
3
(x1x2)+
m2
3
+4
=
2m(m-3)
3

∵点F在圆G的外部,∴
FC
FD
>0
,即
2m(m-3)
3
>0

解得m<0或m>3,又
6
<m<2
3

3<m<2
3
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查向量知识的运用,正确运用韦达定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•虹口区三模)如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(Ⅰ)求证:CF⊥B1E;
(Ⅱ)求三棱锥VB1-EFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区三模)若a,b∈R,那么
1
a
1
b
成立的一个充分非必要条件是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区三模)数列{an}满足:an=
(3-a)n-3(n≤7)
an-6(n>7)
且{an}是递增数列,则实数a的范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区三模)函数y=2x和y=x3的图象的示意图如图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2
(1)设曲线C1,C2分别对应函数y=f(x)和y=g(x),请指出图中曲线C1,C2对应的函数解析式.若不等式kf[g(x)]-g(x)<0对任意x∈(0,1)恒成立,求k的取值范围;
(2)若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12},求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区三模)已知数列{an}满足a1=2,an+1=2(1+
1
n
)2an

(1)令bn=
an
n2
,求数列{bn}和{an}的通项公式;
(2)设cn=(An2+Bn+C)•2n,试推断是否存在常数A,B,C,使对一切n∈N*都有an=cn+1-cn成立?若存在,求出A,B,C的值;若不存在,说明理由;
(3)对(2)中数列{cn},设dn=
an
cn
,求{dn}的最小项的值.

查看答案和解析>>

同步练习册答案