【题目】已知a,b是常数,函数f(x)=ax3+bln(x+ )+3在(﹣∞,0)上的最大值为10,则f(x)在(0,+∞)上的最小值为 .
【答案】﹣4
【解析】解:函数f(x)=ax3+bln(x+ )+3,
设g(x)=ax3+bln(x+ ),
g(﹣x)=﹣ax3+bln(﹣x+ ),
由g(﹣x)+g(x)=b[ln(x+ )+ln(﹣x+ )]
=bln(1+x2﹣x2)=0,
可得g(x)为奇函数,且g(x)的最值之和为M+m=0,
即有g(x)在(﹣∞,0)上的最大值为M=10﹣3=7,
可得g(x)在(0,+∞)上的最小值m=﹣7,
则f(x)在(0,+∞)上的最小值为﹣7+3=﹣4.
所以答案是:﹣4.
【考点精析】本题主要考查了函数的最值及其几何意义的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知命题p:关于x的不等式ax>1(a>0,a≠1)的解集是{x|x<0},命题q:函数y=lg(ax2-x+a)的定义域为R,如果p∨q为真命题,p∧q为假命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域为R的函数f(x)= (x)+bf(x)+c=0恰有5个不同的实数解x1 , x2 , x3 , x4 , x5 , 则f(x1+x2+x2+x4+x5)等于 ( )
A.0
B.21g2
C.31g2
D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
参考公式: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+bx+1满足f(1+x)=f(1﹣x), .
(1)求函数f(x)的解析式;
(2)判断g(x)在[1,2]上的单调性并用定义证明你的结论;
(3)求g(x)在[1,2]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南方向的海面P处,且,并以的速度向西偏北方向移动,台风侵袭的范围为圆形区域,当前半径为,并以的速度不断增大,问几小时后该城市开始受到台风的侵袭?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为, , .等 差数列中, ,且公差.
(Ⅰ)求数列的通项公式;
(Ⅱ)是否存在正整数,使得?.若存在,求出的最小值;若 不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)是定义在R上的偶函数,对任意x∈R,都有f(x+2)=f(x﹣2),且当x∈[﹣2,0]时,f(x)=( )x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣loga(x+2)=0(a>1)有3个不同的实数根,则a的取值范围是( )
A.(1,2)
B.(2,+∞)
C.(1, )
D.( ,2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com