精英家教网 > 高中数学 > 题目详情

【题目】选修44:坐标系与参数方程

在极坐标系中,点O(0,0), .

(1)求以为直径的圆的直角坐标方程;

(2)若直线的极坐标方程为,判断直线与圆的位置关系.

【答案】1)为. (2)直线与圆相切。

【解析】本试题主要是考查了直角坐标方程和极坐标方程的互化,以及直线与圆位置关系的综合运用。

1)设P(ρθ)是所求圆上的任意一点,因为为直径,所以

OPOBcos,即ρ2cos,运用坐标系的互换公式得到结论。

2)圆的圆心的坐标为,半径为,直线的直角坐标方程为

因为圆心到直线距离为与圆的半径的关系可得到结论。

1)设P(ρθ)是所求圆上的任意一点,因为为直径,所以

OPOBcos,即ρ2cos………………………………………………3分

亦即

故所求的圆的直角坐标方程为……………………………………5

注:也可现将化为直角坐标后直接求圆方程.

2)圆的圆心的坐标为,半径为,直线的直角坐标方程为……7分

因为圆心到直线距离为,所以直线与圆相切。………………………10

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知曲线C1的参数方程为 (φ为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4 cosθ.
(1)求C1与C2交点的直角坐标;
(2)已知曲线C3的参数方程为 (0≤α<π,t为参数,且t≠0),C3与C1相交于点P,C2与C3相交于点Q,且|PQ|=8,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,f(x)在[0,+∞)上是增函数,且f( )=0,则不等式f( )>0的解集为(
A.(0, )∪(2,+∞)
B.( ,1)∪(2,+∞)??
C.(0,
D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明“1+2+22+…+2n1=2n-1(n∈N)”的过程中,第二步n=k时等式成立,则当n=k+1时,应得到(  )
A.1+2+22+…+2k2+2k1=2k1-1
B.1+2+22+…+2k+2k1=2k-1+2k1
C.1+2+22+…+2k1+2k1=2k1-1
D.1+2+22+…+2k1+2k=2k1-1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆方程为: 椭圆的右焦点为,离心率为直线 与椭圆相交于两点,且

1)椭圆的方程及求的面积;

2)在椭圆上是否存在一点,使为平行四边形,若存在,求出的取值范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数 y=f(x) 对任意的x,y∈R,满足条件:f(x+y)=f(x)+f(y)﹣2,且当x>0时,f(x)>2
(1)求f(0)的值;
(2)证明:函数f(x)是R上的单调增函数;
(3)解不等式f(2t2﹣t﹣3)﹣2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+3在x=2时取得最小值,且函数f(x)的图象在x轴上截得的线段长为2.
(1)求函数f(x)的解析式;
(2)若函数g(x)=f(x)﹣mx的一个零点在区间(0,2)上,另一个零点在区间(2,3)上,求实数m的取值范围.
(3)当x∈[t,t+1]时,函数f(x)的最小值为﹣ ,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明“当 n 为正奇数时,xn+yn 能被 x+y 整除”,第二步归纳假
设应该写成( )
A.假设当n=k 时, xk+yk 能被 x+y 整除
B.假设当N=2K 时, xk+yk 能被 x+y 整除
C.假设当N=2K+1 时, xk+yk 能被 x+y 整除
D.假设当 N=2K-1 时, x2k-1+y2k-1 能被 x+y 整除

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)同时满足①对于定义域上的任意x,恒有f(x)+f(﹣x)=0;②对于定义域上的任意x1、x2 , 当x1≠x2时,恒有 <0,则称函数f(x)为“理想函数”.给出下列三个函数中:(1)f(x)= ;(2)f(x)=x+1;(3)f(x)= ,能被称为“理想函数”的有(填相应的序号).

查看答案和解析>>

同步练习册答案