精英家教网 > 高中数学 > 题目详情
4.一个几何体的三视图如图所示,则该几何体的表面积是(  )
A.$(1+\sqrt{2}){m^2}$B.$(1+2\sqrt{2}){m^2}$C.$(2+\sqrt{2}){m^2}$D.$(2+2\sqrt{2}){m^2}$

分析 由已知中的三视图可得该几何体是一个以俯视图为底面的四棱锥,求出各个面的面积,相加可得答案.

解答 解:由已知中的三视图可得该几何体是一个以俯视图为底面的四棱锥,
其底面是边长为1m的正方形,故底面积为1m2
侧面均为直角三角形,
其中有两个是腰为1m的等腰直角三角形,面积均为:$\frac{1}{2}$m2
另外两个是边长分别为1m,$\sqrt{2}$m,$\sqrt{3}$m的直角三角形,面积均为:$\frac{\sqrt{2}}{2}$m2
故几何体的表面积S=$(2+\sqrt{2}){m^2}$,
故选:C

点评 本题考查的知识点是棱锥的表面积和体积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0)
(Ⅰ)设bn=an+1-an(n∈N*),证明{bn}是等比数列;
(Ⅱ)当q=2时,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四棱锥P-ABCD中,AD∥BC,AD⊥DC,AD=2BC=2CD=2,侧面APD为等腰直角三角形,∠APD=90°,平面PAD⊥平面ABCD,E为棱PC上的一点.
(1)求证:PA⊥DE;
(2)在棱PC上是否存在一点E,使得二面角E-BD-A的余弦值为-$\frac{{\sqrt{3}}}{3}$,若存在,请求出$\frac{EC}{PC}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于二次函数y=-4x2+8x-5,
(1)指出图象的开口方向、对称轴方程、顶点坐标;
(2)画出它的图象,并说明其图象由y=-4x2的图象经过怎样平移得来;
(3)分析函数的单调性.
(4)求函数的最大值或最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.双曲线与椭圆有共同的焦点F1(-5,0),F2(5,0),点P(4,3)是双曲线的渐近线与椭圆的一个交点,求双曲线与椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$过点$A(1,\frac{{2\sqrt{3}}}{3})$,离心率为$\frac{{\sqrt{3}}}{3}$,左焦点为F.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l:$x+\sqrt{2}y-1=0$交椭圆于A,B两点,求△FAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1,则其渐近线方程为(  )
A.y=±$\frac{\sqrt{3}}{3}$xB.y=±$\sqrt{3}$xC.y=±$\frac{1}{3}$xD.y=±3x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积最大时,其高的值为(  )
A.3$\sqrt{3}$B.$\sqrt{3}$C.2$\sqrt{6}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知抛物线y2=2px(p>0),过点K(-4,0)作抛物线的两条切线KA,KB,A,B为切点,若AB过抛物线的焦点,△KAB的面积为24,则p的值是(  )
A.12B.-12C.8D.4

查看答案和解析>>

同步练习册答案