已知函数.
(Ⅰ)当时,恒成立,求实数的取值范围;
(Ⅱ)若对一切,恒成立,求实数的取值范围.
(1) (2)
解析试题分析:(1)本题为含参二次函数求最值,涉及到的问题是轴动而区间不动,所以要分三种情况,对称轴在区间的左侧,在区间的右侧,在区间之间 .分别求出函数的最值从而解出a的取值范围.(2)与(1)的区别是给定了a的范围,解不等式,所以我们把转化成关于a的不等式,利用给定a的范围恒成立问题来解决x的取值范围.
试题解析:(Ⅰ)当时,设,分以下三种情况讨论:
(1)当时,即时,在上单调递增,,
因此,无解.
(2)当时,即时,在上单调递减,,
因此,解得.
(3)当时,即时, ,
因此,解得.
综上所述,实数的取值范围是. 6分
(Ⅱ) 由得,令,
要使在区间恒成立,只需即,
解得或.所以实数的取值范围是. 12分
考点:二次函数求最值 含参不等式
科目:高中数学 来源: 题型:解答题
已知a为给定的正实数,m为实数,函数f(x)=ax3-3(m+a)x2+12mx+1.
(Ⅰ)若f(x)在(0,3)上无极值点,求m的值;
(Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数(为自然对数的底数),(为常数),是实数集上的奇函数.
(1)求证:;
(2)讨论关于的方程:的根的个数;
(3)设,证明:(为自然对数的底数).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数,其中.
(I)若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值;
(Ⅱ)当时,设,讨论的单调性;
(Ⅲ)在(I)的条件下,设,曲线上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com