4£®Èôº¯Êýy=f£¨x£©£¬x¡ÊD£¬¶ÔÈÎÒâµÄx1¡ÊD£¬×Ü´æÔÚx2¡ÊD£¬Ê¹µÃf£¨x1£©•f£¨x2£©=1£¬Ôò³Æº¯Êýf£¨x£©¾ßÓÐÐÔÖÊM£®
£¨1£©ÅжϺ¯Êýy=2xºÍy=log2xÊÇ·ñ¾ßÓÐÐÔÖÊM£¬ËµÃ÷ÀíÓÉ£»
£¨2£©Èôº¯Êýy=log8£¨x+2£©£¬x¡Ê[0£¬t]¾ßÓÐÐÔÖÊM£¬ÇótµÄÖµ£»
£¨3£©Èôº¯Êýy=$\frac{{{x^2}+ax+9}}{{{x^2}-ax+9}}$£¨a¡Ù0£©ÔÚʵÊý¼¯RÉϾßÓÐÐÔÖÊM£¬ÇóaµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©¸ù¾Ýº¯Êýf£¨x£©¾ßÓÐÐÔÖÊMµÄ¶¨Ò壬¿ÉµÃº¯Êýy=2x¾ßÓÐÐÔÖÊM£¬º¯Êýy=log2xûÓÐÐÔÖÊM£»
£¨2£©Èôº¯Êýy=log8£¨x+2£©£¬x¡Ê[0£¬t]¾ßÓÐÐÔÖÊM£¬Ôòlog82•log8£¨t+2£©=1£¬½ø¶øµÃµ½tµÄÖµ£»
£¨3£©Èôº¯Êý$y=\frac{{{x^2}+ax+9}}{{{x^2}-ax+9}}$£¨a¡Ù0£©ÔÚʵÊý¼¯RÉϾßÓÐÐÔÖÊM£¬ÆäÖµÓò¿ÉÄÜΪ£¨0£¬+¡Þ£©¡¢£¨-¡Þ£¬0£©¡¢[m£¬$\frac{1}{m}$]µÄÐÎʽ£¬ÓÃÅбðʽ·¨¶Ôº¯ÊýÇóÖµÓò£¬Ñ¡Æä·ûºÏÌõ¼þµÄÇé¿ö¼´¿ÉÇóa£®

½â´ð ½â£º£¨1£©º¯Êýy=2xµÄ¶¨ÒåÓòΪR£»
ÇÒf£¨x1£©•f£¨x2£©=${2}^{{x}_{1}+{x}_{2}}$£¬
Èôf£¨x1£©•f£¨x2£©=1£¬Ôòx1+x2=0£¬
¶ÔÈÎÒâµÄx1¡ÊD£¬×Ü´æÔÚx2¡ÊD£¬Ê¹µÃf£¨x1£©•f£¨x2£©=1£¬
¡àº¯Êýy=2x¾ßÓÐÐÔÖÊM£¬
º¯Êýy=log2xµÄ¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬
Áîx1=1£¬Ôòf£¨x1£©=0£¬
´Ëʱf£¨x1£©•f£¨x2£©=0ºã³ÉÁ¢£¬
¼´²»´æÔÚx2¡Ê£¨0£¬+¡Þ£©£¬Ê¹µÃf£¨x1£©•f£¨x2£©=1£¬
¡àº¯Êýy=log2xûÓÐÐÔÖÊM£»
£¨2£©¡ßº¯Êýy=log8£¨x+2£©£¬x¡Ê[0£¬t]µÄÖµÓòΪ[log82£¬log8£¨t+2£©]£¬Èôº¯Êýy=log8£¨x+2£©£¬x¡Ê[0£¬t]¾ßÓÐÐÔÖÊM£¬
Ôòlog82•log8£¨t+2£©=1£¬t+2=83£¬
½âµÃ£ºt=510£»
£¨3£©y=$\frac{{{x^2}+ax+9}}{{{x^2}-ax+9}}$⇒£¨y-1£©x2-£¨ay+a£©x+9y-9=0
⇒¡÷=£¨ay+a£©2-4£¨y-1£©£¨9y-9£©=£¨a2-36£©y2+£¨2a2+72£©y+a2-36¡Ý0
¡ßy1y2=1£¬ÒªÊ¹º¯Êýy=$\frac{{{x^2}+ax+9}}{{{x^2}-ax+9}}$£¨a¡Ù0£©ÔÚʵÊý¼¯RÉϾßÓÐÐÔÖÊM£¬
Ôò$\left\{\begin{array}{l}{{a}^{2}-36£¼0}\\{{¡÷}_{1}£¾0}\end{array}\right.$⇒-6£¼a£¼6ÇÒa¡Ù0
¡àº¯Êýy=$\frac{{{x^2}+ax+9}}{{{x^2}-ax+9}}$£¨a¡Ù0£©ÔÚʵÊý¼¯RÉϾßÓÐÐÔÖÊM£¬aµÄÈ¡Öµ·¶Î§Îª£¨-6£¬0£©¡È£¨0.6£©

µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄж¨Ò壬¼°º¯ÊýµÄÖµÓò£¬ÊôÓÚѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®¶Ô?x¡ÊR£¬mx2+mx+1£¾0ºã³ÉÁ¢£¬ÔòmµÄÈ¡Öµ·¶Î§ÊÇ[0£¬4£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Ä³°àÓÐ60ÃûѧÉú£¬Ñ§ºÅΪ1¡«60ºÅ£¬ÏÖ´ÓÖгéÈ¡5λͬѧ²Î¼ÓÒ»Ïî»î¶¯£¬ÓÃϵͳ³éÑùµÄ·½·¨È·¶¨µÄ³éÑùºÅÂë¿ÉÄÜΪ£¨¡¡¡¡£©
A£®5£¬10£¬15£¬20£¬25B£®5£¬12£¬31£¬39£¬57C£®6£¬16£¬26£¬36£¬46D£®6£¬18£¬30£¬42£¬54

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÇúÏßf£¨x£©=x2+3x-exÔڵ㣨0£¬f£¨0£©£©´¦µÄÇÐÏߵķ½³ÌΪ£¨¡¡¡¡£©
A£®y=x-1B£®y=x+1C£®y=2x-1D£®y=2x+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªµãA£¨-2£¬0£©¡¢B£¨2£¬0£©£¬PÊÇƽÃæÄÚµÄÒ»¸ö¶¯µã£¬Ö±ÏßPAÓëPBµÄбÂÊÖ®»ýÊÇ-$\frac{1}{2}$£®
£¨¢ñ£©ÇóÇúÏßCµÄ·½³Ì£»
£¨¢ò£©Ö±Ïßy=k£¨x-1£©ÓëÇúÏßC½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£¬µ±¡÷AMNµÄÃæ»ýΪ$\frac{12\sqrt{2}}{5}$ʱ£¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÉèµÈ²îÊýÁÐ{an}£¬{bn}µÄÇ°nÏîºÍ·Ö±ðΪSn£¬Tn£¬ÇÒ$\frac{{a}_{n}}{{b}_{n}}$=$\frac{3n+21}{n+1}$£¬Ôò$\frac{{S}_{15}}{{T}_{15}}$=£¨¡¡¡¡£©
A£®$\frac{33}{8}$B£®6C£®5D£®$\frac{69}{17}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑ֪˫ÇúÏßC1£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊΪ3£®ÈôÅ×ÎïÏßC2£ºx2=2py£¨p£¾0£©µÄ½¹µãµ½Ë«ÇúÏßC1µÄ½¥½üÏߵľàÀëΪ$\frac{2}{3}$£¬ÔòÅ×ÎïÏßC2µÄ·½³ÌΪ£¨¡¡¡¡£©
A£®x2=33yB£®x2=33yC£®x2=8yD£®x2=16y

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©ÖУ¬ÍÖÔ²³¤Ö᳤ÊǶÌÖ᳤µÄ$\sqrt{3}$±¶£¬¶ÌÖáµÄÒ»¸ö¶ËµãÓëÁ½¸ö½¹µã¹¹³ÉµÄÈý½ÇÐεÄÃæ»ýΪ$\frac{{5\sqrt{2}}}{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÒÑÖª¶¯Ö±Ïßy=k£¨x+1£©ÓëÍÖÔ²CÏཻÓëA£¬BÁ½µã£¬ÈôÏ߶ÎABµÄÖеãµÄºá×ø±êΪ-$\frac{1}{2}$£¬ÇóбÂÊkµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®sin$\frac{1}{2}$£¬cos$\frac{1}{2}$£¬tan$\frac{1}{2}$µÄ´óС¹ØϵΪ£¨¡¡¡¡£©
A£®sin$\frac{1}{2}$£¼cos$\frac{1}{2}$£¼tan$\frac{1}{2}$B£®cos$\frac{1}{2}$£¼sin$\frac{1}{2}$£¼tan$\frac{1}{2}$
C£®sin$\frac{1}{2}$£¼tan$\frac{1}{2}$£¼cos$\frac{1}{2}$D£®tan$\frac{1}{2}$£¼sin$\frac{1}{2}$£¼cos$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸