精英家教网 > 高中数学 > 题目详情

【题目】在直角△ABC中,∠ACB=30°,∠B=90°,D为AC中点(左图),将∠ABD沿BD折起,使得AB⊥CD(右图),则二面角A﹣BD﹣C的余弦值为(

A.﹣
B.
C.﹣
D.

【答案】A
【解析】解:过A作AE⊥BD,在原图延长角BC与F,过A作AO⊥面BCD,垂足为O.由于面AEF⊥面BCD,所以O在FE上,连BO交CD延长线于M,

∵在△ABC中,∠ACB=30°,∠B=90°,D为AC中点,
AB= ,BD= AC,
∴△ABD为等边三角形,
∴BD⊥AE,BD⊥EF,
∴∠AEF为二面角A﹣BD﹣C的平面角,
过A作AO⊥面BCD,垂足为O,
∵面AEF⊥面BCD,
∴O在EF上,
理解BO交CD延长线于M,
当AB⊥CD时,由三垂线定理的逆定理可知:MB⊥CM,
∴O为翻折之前的三角形ABD的中心,
∴OE= AE,
cos∠AEO=
∴cos∠AEF=
故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项为1,前n项和Sn与an之间满足an= (n≥2,n∈N*
(1)求证:数列{ }是等差数列;
(2)求数列{an}的通项公式;
(3)设存在正整数k,使(1+S1)(1+S1)…(1+Sn)≥k 对于一切n∈N*都成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在区间的最值;

2)求实数的取值范围,使在区间上是单调函数;

3)当时,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线方程为.

(1)求的值;

2)求的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0),其部分图象如图所示,点P,Q分别为图象上相邻的最高点与最低点,R是图象与x轴的交点,若P点的横坐标为 ,f( )= ,PR⊥QR,则函数f(x)的解析式可以是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线系M:xcosθ+(y﹣1)sinθ=1(0≤θ≤2π),对于下列说法:
(1)M中所有直线均经过一个定点;
(2)存在一个圆与所有直线不相交;
(3)对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上;
(4)M中的直线所能围成的正三角形面积都相等.
其中说法正确的是(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=4x的焦点为F,点A、B在抛物线上,且∠AFB=90°,弦AB中点M在准线l上的射影为M1 , 则 的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn+an=4,n∈N*
(1)求数列{an}的通项公式;
(2)已知cn=2n+3(n∈N*),记dn=cn+logCan(C>0且C≠1),是否存在这样的常数C,使得数列{dn}是常数列,若存在,求出C的值;若不存在,请说明理由.
(3)若数列{bn},对于任意的正整数n,均有b1an+b2an1+b3an2+…+bna1=( n 成立,求证:数列{bn}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2分别为双曲线C: =1的左、右焦点,若存在过F1的直线分别交双曲线C的左、右支于A,B两点,使得∠BAF2=∠BF2F1 , 则双曲线C的离心率e的取值范围是(
A.(3,+∞)
B.(1,2+
C.(3,2+
D.(1,3)

查看答案和解析>>

同步练习册答案