精英家教网 > 高中数学 > 题目详情
13.已知圆O为Rt△ABC的内切圆,AC=3,BC=4,∠C=90°,过圆心O的直线l交圆O于P,Q两点,则$\overrightarrow{BP}•\overrightarrow{CQ}$的取值范围是(  )
A.(-7,1)B..[0,1]C.[-7,0]D.[-7,1]

分析 以O为坐标原点,与直线BC平行的直线为x轴,与直线AC平行的直线为y轴,建立直角坐标系,设△ABC的内切圆的半径为r,运用面积相等可得r=1,设出圆的方程,求得交点P,Q,讨论直线的斜率k不存在和大于0,小于0的情况,运用向量的坐标运算,结合数量积的坐标表示和不等式的性质,计算即可得到范围.

解答 解:以O为坐标原点,与直线BC平行的直线为x轴,
与直线AC平行的直线为y轴,建立直角坐标系,如图所示;
设△ABC的内切圆的半径为r,
运用面积相等可得,$\frac{1}{2}$×3×4=$\frac{1}{2}$×r×(3+4+5),
解得r=1,
则B(-3,-1),C(1,-1),
即有圆O:x2+y2=1,
当直线PQ的斜率不存在时,即有P(0,1),Q(0,-1),
$\overrightarrow{BP}$=(3,3),$\overrightarrow{CQ}$=(-1,0),即有$\overrightarrow{BP}$=-3.
当直线PQ的斜率存在时,设直线l:y=kx,(k<0),
代入圆的方程可得P(-$\frac{1}{\sqrt{1{+k}^{2}}}$,-$\frac{k}{\sqrt{1{+k}^{2}}}$),Q($\frac{1}{\sqrt{1{+k}^{2}}}$,$\frac{k}{\sqrt{1{+k}^{2}}}$),
即有$\overrightarrow{BP}$=(3-$\frac{1}{\sqrt{1{+k}^{2}}}$,1-$\frac{k}{\sqrt{1{+k}^{2}}}$),$\overrightarrow{CQ}$=($\frac{1}{\sqrt{1{+k}^{2}}}$-1,$\frac{k}{\sqrt{1{+k}^{2}}}$+1),
则有$\overrightarrow{BP}$=(3-$\frac{1}{\sqrt{1{+k}^{2}}}$)($\frac{1}{\sqrt{1{+k}^{2}}}$-1)+(1-$\frac{k}{\sqrt{1{+k}^{2}}}$)($\frac{k}{\sqrt{1{+k}^{2}}}$+1)
=-3+$\frac{4}{\sqrt{1{+k}^{2}}}$,
由1+k2≥1可得0<$\frac{4}{\sqrt{1{+k}^{2}}}$≤4,
则有-3<-3+$\frac{4}{\sqrt{1{+k}^{2}}}$≤1;
同理当k>0时,求得P($\frac{1}{\sqrt{1{+k}^{2}}}$,$\frac{k}{\sqrt{1{+k}^{2}}}$),Q(-$\frac{1}{\sqrt{1{+k}^{2}}}$,-$\frac{k}{\sqrt{1{+k}^{2}}}$),
有$\overrightarrow{BP}$═-3-$\frac{4}{\sqrt{1{+k}^{2}}}$,
可得-7≤-3+$\frac{4}{\sqrt{1{+k}^{2}}}$<-3;
综上可得,$\overrightarrow{BP}$•$\overrightarrow{CQ}$的取值范围是[-7,1].
故选:D.

点评 本题考查了向量的数量积坐标表示,主要考查向量的坐标运算和直线与圆的位置关系以及不等式的性质问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在△ABC中,N是AC边上一点,且$\overrightarrow{AN}=\frac{1}{2}\overrightarrow{NC}$,P是BN上的一点,若$\overrightarrow{AP}=m\overrightarrow{AB}+\frac{2}{9}\overrightarrow{AC}$,则实数m的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.a=-6是直线l1:ax+(1-a)y-3=0和直线l2:(a-1)x+2(a+3)y-2=0垂直的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.不充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列{an}的通项公式为an=-n2+9n,则该数列第4或5项最大.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将函数f(x)=$\sqrt{x}$中的自变量x用x=g(t)替换,替换后所得的函数F(t)=$\sqrt{g(t)}$与原函数f(x)的值域相同,则函数g(t)可以是下列函数中的①③④(请填写所有满足条件的g(t)的编号).
①g(t)=t${\;}^{\frac{1}{2}}$;②g(t)=2t;③g(t)=3t-5;④g(t)=($\frac{1}{2}$)t-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“?x∈R,ex>x”的否定是(  )
A.$?{x_0}∈R,{e^{x_0}}>{x_0}$B.?x∈R,ex<x
C.?x∈R,ex≤xD.$?{x_0}∈R,{e^{x_0}}≤{x_0}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.矩阵的一种运算$({\begin{array}{l}a&b\\ c&d\end{array}})({\begin{array}{l}x\\ y\end{array}})=({\begin{array}{l}{ax+by}\\{cx+dy}\end{array}})$,该运算的几何意义为平面上的点(x,y)在矩阵$({\begin{array}{l}a&b\\ c&d\end{array}})$的作用下变换成点(ax+by,cx+dy),若曲线x2+4xy+2y2=1在矩阵$({\begin{array}{l}1&a\\ b&1\end{array}})$的作用下变换成曲线x2-2y2=1,则ab=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点P、Q是抛物线y=ax2(a>0)上两点,O为坐标原点,△OPQ是边长为$4\sqrt{3}$的等边三角形,则抛物线的准线方程为(  )
A.$x=-\frac{1}{8}$B.$y=-\frac{1}{8}$C.$y=-\frac{1}{4}$D.$y=-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.a为实数,记函数f(x)=2|cosx|+a($\sqrt{1+sinx}$+$\sqrt{1-sinx}$)的最大值为g(a)
(1)设t=$\sqrt{1+sinx}$+$\sqrt{1-sinx}$,求t的取值范围并把f(x)表示为t的表达式;
(2)求函数f(x)的最大值g(a).

查看答案和解析>>

同步练习册答案