精英家教网 > 高中数学 > 题目详情
5.已知x、y满足|x-1|+|y|≤a(a>0),若x=2x+y的最大值为3,则z的最小值为-1.

分析 作平面区域,化简目标函数z=2x+y为y=-2x+z,从而可得2(1+a)=3,从而解出a,再求最小值.

解答 解:作平面区域如下,

目标函数z=2x+y可化为y=-2x+z,
∵目标函数z=2x+y的最大值为3,
结合图象可知,目标函数z=2x+y在(1+a,0)处有最大值,
故2(1+a)=3,
故a=$\frac{1}{2}$;
在点(-$\frac{1}{2}$,0)处有最小值为2×(-$\frac{1}{2}$)=-1,
故答案为:-1.

点评 本题考查了线性规划的基本解法应用,注意化为截距式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数y=log2(4x+1)-kx是偶函数.
(1)求k的值;
(2)若f(x)>log25-1,求x的取值范围;
(3)设函数g(x)=log2(a•2x-$\frac{4}{3}$a),其中a>0,若函数f(x)与g(x)的图象有且只有一个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知A(-5,0),B(5,0),直线AM、BM相交于点M,且它们的斜率之积是$\frac{4}{9}$,试求点M的轨迹方程,并由点M的轨迹方程判断轨迹的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.$\frac{1}{3}$(a+3x)=4(a-x),则x=$\frac{11a}{15}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知甲班有48人,现学校用分层抽样的方法从甲、乙两班名抽取了部分同学某项测试的成绩,并作出了茎叶图及频率分布直方图(按区间[0,5),[5,10),[25,30]分段),但茎叶图中甲班的成绩被墨水沾污(如图1),但甲班样本成绩的频率分布直方图完好如图2,且甲班样本成绩的中位数为14,平均数与乙班样本成绩k的平均数恰好相等.则甲班样本方差及乙班人数分别是(  )
A.41.75,36B.42,36C.2.3,6D.45.75,36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点A(-3,5)B(0,3),试在直线y=x+1上找一点P,使|PA|+|PB|最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若3a=5,3b=6,3x=$\frac{125}{36}$,试用a,b表示x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题
①$\left.\begin{array}{l}{a⊥α}\\{b?α}\end{array}\right\}$⇒a⊥b;②$\left.\begin{array}{l}{a⊥α}\\{a∥b}\end{array}\right\}$⇒b⊥α;
③$\left.\begin{array}{l}{a⊥α}\\{b∥α}\end{array}\right\}$⇒a⊥b;④$\left.\begin{array}{l}{a⊥b}\\{a⊥b}\\{b?α}\\{c?α}\end{array}\right\}$⇒a⊥α;
⑤$\left.\begin{array}{l}{a∥α}\\{a⊥b}\end{array}\right\}$⇒b⊥α;⑥$\left.\begin{array}{l}{a⊥α}\\{b⊥a}\end{array}\right\}$⇒b∥α.
其中正确的命题个数是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1,F2,P是椭圆上一点,且|PF2|=$\frac{\sqrt{3}}{2}$|PF1|,则∠PF1F2的最大值为$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案