精英家教网 > 高中数学 > 题目详情

【题目】随着生活节奏的加快以及智能手机的普及,外卖点餐逐渐成为越来越多用户的餐饮消费习惯.由此催生了一批外卖点餐平台,已知某外卖平台的送餐费用与送餐距离有关(该平台只给5千米范围内配送),为调査送餐员的送餐收入,现从该平台随机抽取80名点外卖的用户进行统计,按送餐距离分类统计结果如下表:

以这80名用户送餐距离位于各区间的频率代替送餐距离位于该区间的概率.

(1)从这80名点外卖的用户中任取一名用户.求该用户的送餐距离不超过3千米的概率;

(2)试估计利用该平台点外卖用户的平均送餐距离;

(3)若该外卖平台给送餐员的送餐贽用与送餐距离有关,规定2千米内为短距离,每份3元,2千米到4千米为中距离,每份5元;超过4千米为远距离,每份9元,若送餐员一天的目标收 人不低于150元,试估计一天至少要送多少份外卖?

【答案】(1)(2)2.35 (3)33

【解析】

(1)由表格中数据直接利用古典概型概率公式可得结果;(2)估计每名点外卖用户的平均送餐距离为;(3)送一份外卖的平均收入为(元),从而可得结果.

(1)由表格中数列据可得概率.

(2)估计每名点外卖用户的平均送餐距离为

(千米),

(3)送一份外卖的平均收入为(元),

估计一天至少要送份外卖.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥平面,且.

(1)取中点,求证:平面

(2)求直线所成角的余弦值.

(3)在线段上,是否存在一点,使得二面角的大小为,如果存在,求与平面所成角,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如表:

(1)根据表中数据,建立关于的线性回归方程

(2)根据线性回归方程预测2019年该地区该农产品的年产量.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.(参考数据: ,计算结果保留小数点后两位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[4050),[5060),[6070),[7080),[8090),[90100]

1)求频率分布直方图中a的值并估计这50名使用者问卷评分数据的中位数;

2)从评分在[4060)的问卷者中,随机抽取2人,求此2人评分都在[5060)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),以为极点,轴的非负半轴为极轴建极坐标系,直线的极坐标方程为

(Ⅰ)求的极坐标方程;

(Ⅱ)射线与圆C的交点为与直线的交点为,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是  

A. 至少有一个白球;都是白球 B. 至少有一个白球;至少有一个红球

C. 至少有一个白球;红、黑球各一个 D. 恰有一个白球;一个白球一个黑球

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,且.

(Ⅰ)求的值;

(Ⅱ)是否存在实数,使得,对任意正整数恒成立?若存在,求出实数的值并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求该函数的值域;

2)若对于任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知,绿地面积为.

(1)写出关于的函数关系式,并指出这个函数的定义域.

(2)为何值时,绿地面积最大?

查看答案和解析>>

同步练习册答案