精英家教网 > 高中数学 > 题目详情
7.已知a=2${\;}^{\frac{3}{2}}$,b=log20.3,c=0.82,则a,b,c的大小关系为(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵a=2${\;}^{\frac{3}{2}}$>1,b=log20.3<0,c=0.82∈(0,1),
∴a>c>b.
故选:D.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在△ABC中,sinA=sinB,则△ABC是什么三角形(  )
A.直角三角形B.钝角三角形C.等腰三角形D.锐角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在四面体ABCD中,已知AB=2,BC=1,AD=3,CD=4且 AD⊥AB,BC⊥AB,则二面角C-AB-D的余弦值为-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.化简1-2sin2($\frac{π}{4}$-$\frac{α}{2}$)等于(  )
A.sinαB.-sinαC.cosαD.-cosα

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知:$\overrightarrow a=(2sinx,-\sqrt{3}cosx),\overrightarrow b=(cosx,2cosx),设f(x)=\overrightarrow a•\overrightarrow b$
(1)求f(x)的最小正周期和最大值.
(2)将f(x)的图象左移$\frac{π}{3}$个单位,并上移$\sqrt{3}$个单位得到g(x)的图象,求g(x)的解析式.
(3)设h(x)是g(x)的导函数,当0≤x≤$\frac{π}{2}$时,求h(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知角α的终边过点(1,-$\sqrt{3}$),则cosα=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和记为Sn,若a2=a+2(a为常数),且Sn是nan与na的等差中项.
(1)求a1,a3,a4
(2)猜想出an的表达式,并用数学归纳法进行证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=$\frac{{\sqrt{2cosx-\sqrt{2}}}}{2sinx-1}$定义域是{x|2k$π-\frac{π}{4}$$≤x≤2kπ+\frac{π}{4}$,且x$≠2kπ+\frac{π}{6}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A,B两种车辆的载客量分别为36人和60人,在甲地和乙地之间往返一次的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要运送不少于900人从甲地去乙地的旅客,并于当天返回,为使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?营运成本最小为多少元?

查看答案和解析>>

同步练习册答案