精英家教网 > 高中数学 > 题目详情
给出以下命题:
(1)若
b
a
f(x)dx>0
,则f(x)>0;  
(2)
0
|sinx|dx=4

(3)应用微积分基本定理,有
2
1
1
x
dx=F(2)-F(1)
,则F(x)=lnx;
(4)f(x)的原函数为F(x),且F(x)是以T为周期的函数,则
a
0
f(x)dx=
a+T
T
f(x)dx

其中正确命题的个数为(  )
分析:(1)根据微积分基本定理,得出)∫baf(x)dx=F(b)-F(a)>0,可以看到与f(x)正负无关.
(2)注意到sinx在[0,2π]的取值符号不同,根据微积分基本运算性质,化为∫0πsinxdx+∫π(-sinx)dx求解,判断.
(3)根据函数导数运算性质,应有  F(x)=lnx+c  (c为常数).
(4)根据微积分基本定理,两边分别求解,再结合F(a+T)=F(a),F(T)=F(0)判定.
解答:解:(1)由∫baf(x)dx=F(b)-F(a)>0,得F(b)>F(a),未必f(x)>0.(1)错误.
(2)∫0|sinx|dx=∫0π|sinx|dx+∫π|sinx|dx=∫0πsinxdx+∫π(-sinx)dx=(-cosx)|0π+cosx|π=1-(-1)+1-(-1)=4.(2)正确.
(3)根据函数导数运算性质,若F′(x)=
1
x
,应有  F(x)=lnx+c  (c为常数),(3)错误.
(4)∫0af(x)dx=F(a)-F(0),∫Ta+Tf(x)dx=F(a+T)-F(T)=F(a)-F(0),即
a
0
f(x)dx=
a+T
T
f(x)dx
;(4)正确.
正确命题的个数为2,
故选B.
点评:本题考查微积分基本定理,微积分基本运算性质.属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下命题:
(1)若
b
a
f(x)dx>0
,则f(x)>0; 
(2)
0
|sinx|dx=4

(3)f(x)的原函数为F(x),且F(x)是以T为周期的函数,则
a
0
f(x)dx=
a+T
T
f(x)dx

其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下命题:
(1)在△ABC中,sinA>sinB是A>B的必要不充分条件;
(2)在△ABC中,若tanA+tanB+tanC>0,则△ABC一定为锐角三角形;
(3)函数y=
x-1
+
1-x
与函数y=sinπx,x∈{1}是同一个函数;
(4)函数y=f(2x-1)的图象可以由函数y=f(2x)的图象按向量
a
=(1,0)
平移得到.
则其中正确命题的序号是
(2)(3)
(2)(3)
(把所有正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下命题:
(1)?x∈R,使得sinx+cosx>1;
(2)函数f(x)=
sinx
x
在区间(0,
π
2
)
上是单调减函数;
(3)“x>1”是“|x|>1”的充分不必要条件;
(4)在△ABC中,“A>B”是“sinA>sinB”的必要不充分条件.
其中是真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下命题:
(1)函数y=f(x)的图象与直线x=2最多有一个交点;
(2)当sinx≠0时,函数y=sin2x+
4
sin2x
的最小值是4

(3)函数y=
1
2x-1
-m
是奇函数的充要条件是m=
1
2

(4)满足f(
1
2
-x)=f(
3
2
+x)
和f(x-1)=-f(x)的函数f(x)一定是偶函数;
则其中正确命题的序号是
(1)(4)
(1)(4)

查看答案和解析>>

同步练习册答案