精英家教网 > 高中数学 > 题目详情
若等差数列{an}的公差为d,前n项的和为Sn,则数列{
Sn
n
}
为等差数列,公差为
d
2
.类似地,若各项均为正数的等比数列{bn}的公比为q,前n项的积为Tn,则数列{
nTn
}
为等比数列,公比为
 
分析:仔细分析数列 {
Sn
n
}
为等差数列,且通项为
Sn
n
=a1+(n-1)•
d
2
的特点,类比可写出对应数列 {
nTn
}
为等比数列的公比.
解答:解:因为在等差数列{an}中前n项的和为Sn的通项,且写成了
Sn
n
=a1+(n-1)•
d
2

所以在等比数列{bn}中应研究前n项的积为Tn的开n方的形式.
类比可得
nTn
=b1(
q
)n-1
.其公比为
q

故答案为
q
点评:本小题主要考查等差数列、等比数列以及类比推理的思想等基础知识.在运用类比推理时,通常等差数列中的求和类比等比数列中的乘积.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、若等差数列{an}的前5项和S5=30,且a2=7,则a7=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin2x,若等差数列{an}的第5项的值为f′(
π6
),则a1a2+a2a9+a9a8+a8a1=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)若等差数列{an}的前n项和为Sn(n∈N*),若a2:a3=5:2,则S3:S5=
3:2
3:2

查看答案和解析>>

科目:高中数学 来源: 题型:

若等差数列{an}的项数m为奇数,且a1+a3+a5+…+am=52,a2+a4+…+am-1=39则m=(  )

查看答案和解析>>

同步练习册答案