精英家教网 > 高中数学 > 题目详情
命题“若x,y都是正数,则x+y为正数”的否命题是
 
考点:四种命题
专题:简易逻辑
分析:根据四种命题之间的关系写出命题的否命题即可.
解答: 解:命题“若x,y都是正数,则x+y为正数”的否命题是:
“若x,y不都是正数,则x+y是非正数”,
故答案为:若x,y不都是正数,则x+y是非正数.
点评:本题考查了四种命题之间的关系,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a2,a5是方程x2-12x+27=0的两根,数列{an}是公差为正的等差数列,数列{bn}的前n项和为Tn,且Tn=1-
1
2
bn(n∈N).
(1)求数列{an},{bn}的通项公式;
(2)记cn=anbn,若数列{cn}的前n项和Sn,求证:Sn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

若p:α=
π
6
,q:cos(
2
+α)=
1
2
,那么p是q的(  )
A、充分非必要条件
B、必要非充分条件
C、非充分非必要条件
D、充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:|(
4
9
)-
1
2
-lg5|+
lg22-lg4+1
-5 1-log52=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log2(-x)是(  )
A、在区间(-∞,0)上的增函数
B、在区间(-∞,0)上的减函数
C、在区间(0,+∞)上的增函数
D、在区间(0,+∞)上的减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:对任意x1,x2∈R,(f(x2)-f(x1))(x2-x1)≥0,则“非p”是(  )
A、存在x1,x2∈R,使(f(x2)-f(x1))(x2-x1)<0
B、对任意x1,x2∈R,都有(f(x2)-f(x1))(x2-x1)≤0
C、存在x1,x2∈R,使(f(x2)-f(x1))(x2-x1)≤0
D、对任意x1,x2∈R,都有(f(x2)-f(x1))(x2-x1)<0

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={x|
x-2
3
+
x-3
2
=
3
x-2
+
2
x-3
},N={x|
x-6
5
+
x-5
6
=
5
x-6
+
6
x-5
},则M∩N=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数经过原点的是(  )
A、y=2x-1
B、y=x-1
C、y=log2x
D、y=-x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

P(2,-3)在曲线x2-ay2=1上,则a的值为
 

查看答案和解析>>

同步练习册答案