精英家教网 > 高中数学 > 题目详情
cos2α
sin(α-
π
4
)
=-
2
2
,则sin2α的值为
 
考点:两角和与差的正弦函数,二倍角的正弦,二倍角的余弦
专题:计算题,三角函数的求值
分析:由三角函数公式化简已知式子可得cosα-sinα=0或cosα+sinα=
1
2
,平方可得答案.
解答: 解:∵
cos2α
sin(α-
π
4
)
=-
2
2

∵2cos2α=
2
sin(
π
4
-α),
∴2(cos2α-sin2α)=cosα-sinα,
∴cosα-sinα=0,或cosα+sinα=
1
2

平方可得1-sin2α=0,或1+sin2α=
1
4

∴sin2α=1,或sin2α=-
3
4

∵若sin2α=1,则cos2α=0,代入原式可知应舍去,
故答案为:-
3
4
点评:本题考查两角和与差的三角函数公式,二倍角公式的应用,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列满足a1+a2+a3=6,an+1=-
1
an+1
,则a16+a17+a18=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在R上的偶函数f(x),其图象关于点(1,0)对称,并且x∈[2,4]时,f(x)=(3-x)3
(1)证明:f(x)+f(2-x)=0;
(2)证明:f(x)-f(x+4)=0;
(3)求f(x)在[-2,2]上的解析式,并写出f(x)在R上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C:x2-y2=λ(λ>0)的离心率是
 
;渐近线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F1(-10,0)、F2(10,0),P是双曲线
x2
36
-
y2
64
=1
上的一点,则|PF1|-|PF2|=(  )
A、12B、-12
C、-12或12D、16或12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项都是正数的等比数列{an}满足a7=a6+2a5,若存在不同的两项am和an,使得am•an=16a12,则
1
m
+
4
n
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C对边分别为a、b、c,且2cos(B-C)-1=4cosBcosC.
(Ⅰ)求角A的大小;
(Ⅱ)若a=3,2sinB=sinC,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,若bcosA+acosB=-2ccosC.
(1)求角C的大小;
(2)若b=2a,且△ABC的面积为2
3
,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式(1-x)(2x+1)≤0的解集为
 

查看答案和解析>>

同步练习册答案