已知函数和函数的图像关于直线对称,
则函数的解析式为
科目:高中数学 来源: 题型:
(09年山东猜题卷)已知函数和.其中. (Ⅰ)若函数与的图像的一个公共点恰好在x轴上,求的值; (Ⅱ)若函数与图像相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的的值;如果没有,请说明理由. (Ⅲ)若和是方程的两根,且满足,证明:当时,.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数和.其中.
(Ⅰ)若函数与的图像的一个公共点恰好在x轴上,求的值;
(Ⅱ)若函数与图像相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的的值;如果没有,请说明理由.
(Ⅲ)若和是方程的两根,且满足,证明:当时,.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数和.其中.
(Ⅰ)若函数与的图像的一个公共点恰好在x轴上,求的值;
(Ⅱ)若函数与图像相交于不同的两点A、B,O为坐标原点,试问:△OAB的面积S有没有最值?如果有,求出最值及所对应的的值;如果没有,请说明理由.
(Ⅲ)若和是方程的两根,且满足,证明:当时,.
查看答案和解析>>
科目:高中数学 来源:2014届山东省济宁市高一下学期期中数学试卷(解析版) 题型:解答题
已知函数。
(1)求函数的最小正周期和最大值;
(2)求函数的增区间;
(3)函数的图象可以由函数的图象经过怎样的变换得到?
【解析】本试题考查了三角函数的图像与性质的运用。第一问中,利用可知函数的周期为,最大值为。
第二问中,函数的单调区间与函数的单调区间相同。故当,解得x的范围即为所求的区间。
第三问中,利用图像将的图象先向右平移个单位长度,再把横坐标缩短为原来的 (纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位即可。
解:(1)函数的最小正周期为,最大值为。
(2)函数的单调区间与函数的单调区间相同。
即
所求的增区间为,
即
所求的减区间为,。
(3)将的图象先向右平移个单位长度,再把横坐标缩短为原来的 (纵坐标不变),然后把纵坐标伸长为原来的倍(横坐标不变),再向上平移1个单位即可。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com