精英家教网 > 高中数学 > 题目详情

椭圆数学公式(a>b>0)的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点(0,3)到椭圆上的点的最远距离为数学公式,则此椭圆的方程是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:由F1、F2、B1、B2四点共圆,得出b=c,进而得到a2=b2+c2=2b2,再设椭圆的方程(含参数b),设H(x,y)为椭圆上一点,化简点(0,3)到椭圆上的点的距离,利用其最大值,分类讨论求出参数b的值,即得椭圆的方程.
解答:∵F1、F2、B1、B2四点共圆,∴b=c,
∴a2=b2+c2=2b2
设椭圆的方程为,N(0,3),
设H(x,y)为椭圆上一点,则|HN|2=x2+(y-3)2=-(y+3)2+2b2+18,(-b≤y≤b),
①若0<b<3,|HN|2的最大值b2+6b+9=50得 (舍去),
②若b≥3,|HN|2的最大值2b2+18=50得b2=16,
∴所求的椭圆的方程为:
故选A.
点评:本题考查椭圆的性质及其应用、函数最值的求法等,解题时要注意分类讨论思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年河北冀州中学高二年级下学期第三次月考题(文) 题型:解答题

已知椭圆(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为
(i)若,求直线l的倾斜角;
(ii)若点Q在线段AB的垂直平分线上,且.求的值.

查看答案和解析>>

科目:高中数学 来源:2013年浙江省杭州市重点高中高考命题比赛数学参赛试卷14(理科)(解析版) 题型:解答题

已知椭圆(a>b>0)的右焦点为F2(3,0),离心率为
(1)求椭圆的方程.
(2)设直线y-kx与椭圆相交于A,B两点,M,N分别为线段AF2,BF2的中点,若坐标原点O在以MN为直径的圆上,求k的值.

查看答案和解析>>

科目:高中数学 来源:2011年湖北省天门市高考数学模拟试卷3(文科)(解析版) 题型:解答题

已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年广东省广州市华侨中学高三一轮复习检测数学试卷(理科)(解析版) 题型:解答题

已知F1,F2分别是椭圆(a>b>0)的左,右焦点,若椭圆的右准线上存在一点P,使得线段PF1的垂直平分线过点F2,则离心率的范围是   

查看答案和解析>>

科目:高中数学 来源:2010年河北省邯郸市高二上学期期末考试数学理卷 题型:解答题

(本小题满分分)

(普通高中)已知椭圆(a>b>0)的离心率,焦距是函数的零点.

(1)求椭圆的方程;

(2)若直线与椭圆交于两点,,求k的值.

 

查看答案和解析>>

同步练习册答案