精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导数f′(x)< ,则不等式f(x2)< 的解集为

【答案】(﹣∞,﹣1)∪(1,+∞)
【解析】解:设F(x)=f(x)﹣ x,则F′(x)=f′(x)﹣
∵f′(x)< ,∴F′(x)=f′(x)﹣ <0
即函数F(x)在R上单调递减
而f(x2)< 即f(x2)﹣ <f(1)﹣
∴F(x2)<F(1)而函数F(x)在R上单调递减
∴x2>1即x∈(﹣∞,﹣1)∪(1,+∞)
故答案为:(﹣∞,﹣1)∪(1,+∞)
设F(x)=f(x)﹣ x,根据题意可得函数F(x)在R上单调递减,然后根据f(x2)< 可得f(x2)﹣ <f(1)﹣ ,最后根据单调性可求出x的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%50%,可能的最大亏损分别为30%10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:

超市

A

B

C

D

E

F

G

广告费支出

1

2

4

6

11

13

19

销售额

19

32

40

44

52

53

54

1)若用线性回归模型拟合的关系,求关于的线性回归方程;

2)用二次函数回归模型拟合的关系,可得回归方程:

经计算二次函数回归模型和线性回归模型的分别约为,请用说明选择哪个回归模型更合适,并用此模型预测超市广告费支出为3万元时的销售额.

参数数据及公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】气象意义上从春季进入夏季的标志为连续5天的日平均温度均不低于22℃.现有甲、乙、丙三地连续5天的日平均温度的记录数据:(记录数据都是正整数)

①甲地5个数据的中位数为24,众数为22;

②乙地5个数据的中位数为27,总体均值为24;

③丙地5个数据中有一个数据是32,总体均值为26,总体方差为10.8.

则肯定进入夏季的地区有_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上、下焦点分别为,上焦点到直线的距离为3,椭圆的离心率.

(1)求椭圆的方程;

(2)椭圆,设过点斜率存在且不为0的直线交椭圆两点,试问轴上是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若三角形三边的长度为连续的三个自然数,则称这样的三角形为“连续整边三角形”。下列说法正确的是( )

A. “连续整边三角形”只能是锐角三角形

B. “连续整边三角形”不可能是钝角三角形

C. 若“连续整边三角形”中最大角是最小角的2倍,则这样的三角形有且仅有1个

D. 若“连续整边三角形”中最大角是最小角的2倍,则这样的三角形可能有2个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,D,E,F分别是B1A1 , CC1 , BC的中点,AE⊥A1B1 , D为棱A1B1上的点.

(1)证明:DF⊥AE;
(2)求平面DEF与平面ABC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班在一次个人投篮比赛中,记录了在规定时间内投进个球的人数分布情况:

进球数(个)

0

1

2

3

4

5

投进个球的人数(人)

1

2

7

2

其中对应的数据不小心丢失了,已知进球3个或3个以上,人均投进4个球;进球5个或5个以下,人均投进2.5个球.

(1)投进3个球和4个球的分别有多少人?

(2)从进球数为3,4,5的所有人中任取2人,求这2人进球数之和为8的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《张丘建算经》是公元5世纪中国古代内容丰富的数学著作,书中卷上第二十三问:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈.问日益几何?”其意思为“有个女子织布,每天比前一天多织相同量的布,第一天织五尺,一个月(按30天计)共织390尺.问:每天多织多少布?”已知1匹=4丈,1丈=10尺,估算出每天多织的布的布约有(
A.0.55尺
B.0.53尺
C.0.52尺
D.0.5尺

查看答案和解析>>

同步练习册答案